Andrea Buccoliero

Andrea Buccoliero,  9 aprile 2024
Dottorato in Scienze Umane - 38° ciclo (1 ottobre 2022 - 30 settembre 2025)
andrea|buccoliero*univr|it <== Sostituire il carattere | con . e il carattere * con @ per avere indirizzo email corretto.

Dottorato in Scienze Umane - 38° ciclo (1 ottobre 2022 - 30 settembre 2025)

Programma di ricerca dottorato

An Artificial Intelligence (AI) agent prototype to infer Burnout risk via human speech

One of the fastest-growing domains, understood in terms of epidemiological weight and social and organizational impact, is that relating to Mental Health as an integral part of health and well-being as defined by the World Health Organization (WHO) Constitution. Among the various priorities related to Mental Health, facing Burnout syndrome is one the most challenging. In May 2019, burnout has been recognized as a syndrome and, as such, has been listed in the 11th revision of the International Classification of Disease (ICD), the global reference text for all diseases and health conditions. The World Health Organization defines burnout as an "occupational phenomenon" resulting from poorly managed chronic stress (WHO, 2019).

The project aims to identify biomarkers of Burnout in the voice of individuals, and to develop an AI Agent able to perform the assessment. It spans several application domains, all intertwined by using speech as a proxy for accessing human emotional state. The key idea is to adopt modern Speech Emotion Recognition (SER) (Schuller, 2018) algorithms to evaluate burnout presence and burnout risks among individuals.

During the initial part of the PhD programm, the project took the strand of literature research to have a clear comprehension of the state of art on the topics: Speech Emotion Recognition (SER) & Burnout syndrome Assessment.

On the SER side, Khalil, Jones, Babar et al propose a review of Speech Emotion Recognition Using Deep Learning Techniques. The primary goal is to comprehend human emotional state. Efforts are required to enhance the accuracy of emotion recognition by machines. On the Burnout side, this syndrome is currently measured through several Patient-Reported Outcome Measures (PROMs) and some of them have become widely used in occupational health research and practice. To be validly and reliably used in medical research and practice, PROMs should exhibit robust psychometric properties. Among the different PROMs, Cognitive behavioral intervention (CBI) and, to a lesser extent, Oldenburg Burnout Inventory (OLBI) meet this prerequisite. (Y. Shoman, 2021).

According to the introduced SoA, this project aims to address the following research questions:

  1. What is the current view of Burnout? Do authors include in their discussion the role of voice?
  2. What is the empirical evidence on Speech Emotion Recognition accuracy? How can we measure it?
  3. What are the implications on devising assessment interventions for individual wellbeing?
  4. Are there any Explainable Burnout Biomarkers hidden in the voice?
  5. Can we suggest screening strategies to monitor the phenomenon in a sustainable and privacy-compliant way?

To answer the above-mentioned questions, this project is divided into three main studies.

The first study consists in an overview of the existing methods, tools, and models to assess Burnout risk via SER. The second study is an empirical work devised to design & develop applications and to collect data. The third is to design the AI agent and to test it.

Referente dottorato
Riccardo Sartori
Tutori dottorato
Andrea Ceschi


Insegnamenti attivi nel periodo selezionato: 0.
Clicca sull'insegnamento per vedere orari e dettagli del corso.

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e a breve anche tramite l'app Univr.


Di seguito sono elencati gli eventi e gli insegnamenti di Terza Missione collegati al docente:

  • Eventi di Terza Missione: eventi di Public Engagement e Formazione Continua.
  • Insegnamenti di Terza Missione: insegnamenti che fanno parte di Corsi di Studio come Corsi di formazione continua, Corsi di perfezionamento e aggiornamento professionale, Corsi di perfezionamento, Master e Scuole di specializzazione.


Strutture del Dipartimento