

Blaise Developer's Guide

Blaise 4.5 A Survey Processing System Copyright © 2002 by Statistics Netherlands

Blaise is a registered trademark of Statistics Netherlands.

Blaise® Developer's Guide
Statistics Netherlands
Methods and Informatics Department
Heerlen
Copyright © 2002 by Statistics Netherlands

ISBN 90 3572995 1

Acknowledgments

The Blaise System is developed by Statistics Netherlands. Special thanks for the
editing and revision of this manual go to Westat, the licensor and distributor of
Blaise Software in North America.

Developer's Guide i

Table of Contents

1 Introduction ...1
1.1 Additional Capabilities ..3
1.2 Advanced Blaise products ...3
1.3 Blaise Documentation..4
1.4 Blaise Examples ..5
1.5 Conventions Used in This Guide...5

2 Blaise Control Centre..7
2.1 Opening the Control Centre...7

2.1.1 File types in the Control Centre...9
2.1.2 Blaise text editor..11

2.2 Control Centre Functions...18
2.2.1 Prepare command ..18
2.2.2 Build Command...20
2.2.3 Run command..21
2.2.4 Setting run parameters ...22
2.2.5 Setting General Environment Parameters..23
2.2.6 Projects ..25
2.2.7 Data model properties..31
2.2.8 Data file management ..31
2.2.9 Configuring tools...32
2.2.10 Manipula Wizard ..35
2.2.11 Monitor utility...38
2.2.12 Hospital utility ..40
2.2.13 Command line prepare utility ...42
2.2.14 A remark on OleDB..42

2.3 Structure Browser ..43
2.3.1 Viewing the structure...43
2.3.2 Structure Browser options ...47
2.3.3 Viewing data model statements ...48

2.4 Database Browser ..50
2.4.1 Viewing the data..51
2.4.2 Database Browser options ...56

2.5 Help ...57
2.5.1 What’s New ...57
2.5.2 Enter registration ...57

3 Data Model Basics ...59

ii Blaise 4.5

3.1 Blaise Language Overview..59
3.2 Fields ...69

3.2.1 Field types..74
3.2.2 TYPE section...88
3.2.3 Answer attributes...93
3.2.4 Enhancing texts..97

3.3 Auxiliary Fields (Auxfields)..102
3.4 Local Variables (Locals) ...104
3.5 Summary of Fields, Auxfields, and Locals ...106
3.6 Rules ..107

3.6.1 Route instructions ..107
3.6.2 Route field methods...107
3.6.3 Conditional rules..113
3.6.4 Edit checks...120
3.6.5 Computations...132
3.6.6 Looping through rules ...134
3.6.7 Layout elements in the RULES section...137
3.6.8 Rules or no rules ..138
3.6.9 Empty RULES section...138

3.7 SETTINGS Section ...139
3.7.1 Key fields...139
3.7.2 Languages..142
3.7.3 TLANGUAGE, a provided language type ..144

3.8 Functions ...146
3.9 Data File Compatibility ...147

3.9.1 Causes of data file incompatibility ..148
3.9.2 Production or development..149

3.10 Good Programming Practices..150
3.11 Example Data Models ...151

4 Blocks and Tables ..153
4.1 Blocks ..155

4.1.1 Blocks as types, repeating code ...157
4.1.2 Block-level text..160
4.1.3 Passing information to a block by direct reference......................................161
4.1.4 Two or more separate blocks...162
4.1.5 Nested blocks...164

4.2 Parameters ...167
4.2.1 Parameter example ..167
4.2.2 Parameter details..169

4.3 Included Files ..173
4.3.1 Format of the INCLUDE command ..173

Developer's Guide iii

4.3.2 FIELDS and RULES sections in included files...175
4.3.3 File name extensions ...175

4.4 Tables ..175
4.4.1 Extremely large tables ...177
4.4.2 Different kinds of tables ..180
4.4.3 Protecting blocks and tables from further change181

4.5 Mini-data Models ..182
4.6 Block Computations ..182
4.7 Array Methods...183
4.8 Helpful Administrative and Survey Management Blocks185

4.8.1 Nonresponse block ..188
4.8.2 Appointment block ..190

4.9 Parallel Blocks...191
4.9.1 Blocks chosen by menu ...193

4.10 Hierarchical Data Models..195
4.10.1 Connecting arrayed blocks..197

4.11 Selective Checking Mechanism and Instrument Performance............................198
4.11.1 Performance and parameters...198
4.11.2 Other performance gains...200

4.12 Good Programming Practices..201
4.13 Example Data Models ...202

5 Special Topics...205
5.1 Hierarchical Coding...205

5.1.1 Classification type ...206
5.1.2 Building the classification type ...208
5.1.3 Classify method for coding a field...210
5.1.4 Using the code later in the data model...212

5.2 Retrieving Information from External Files ..214
5.2.1 External file requirements..214
5.2.2 The external data model and data file..215
5.2.3 Referring to the external data model and data file.......................................217
5.2.4 Accessing the external data with file methods...220

5.3 Lookups ...224
5.3.1 External lookup file ...225
5.3.2 Keys in the external lookup file...226
5.3.3 Declaring the external file lookup from the main data model229
5.3.4 Accessing related data in the lookup record ..230
5.3.5 Giving the lookup a starting value...231
5.3.6 Using hierarchical coding and lookup together ...232

5.4 Blaise Procedures ..233

iv Blaise 4.5

5.5 Dynamic Link Libraries...236
5.5.1 Two types of alien DLL reference...237
5.5.2 Delphi™ DLLs and other DLLs..237
5.5.3 Delphi™ DLL procedure called by a Blaise DEP alien procedure238
5.5.4 Delphi™ DLL procedure called by a Blaise DEP alien router....................238

5.6 Audit Trail ...238
5.6.1 Audit trail DLLs ..239
5.6.2 Invoking the audit trail DLL..245
5.6.3 Contents of the audit trail file ..246
5.6.4 Miscellaneous audit trail information..247

5.7 Multimedia Language..248
5.7.1 Implementing the multimedia capability ...248
5.7.2 Declaring the multimedia language ...249
5.7.3 Multimedia key words in the multimedia language.....................................249
5.7.4 Multimedia settings in the mode library file..251
5.7.5 Other multimedia considerations...252

5.8 Question-by-Question Help...254
5.8.1 Using WinHelp ..255
5.8.2 Create a WinHelp file ..258
5.8.3 Blaise help language..258

5.9 LAYOUT Section..259
5.9.1 Implementing LAYOUT sections..263
5.9.2 Location key words ...264
5.9.3 Layout style key words..264
5.9.4 Location and layout key words used together ...265

5.10 Example Data Models ...265
6 Data Entry Program..267

6.1 Overview of Screen Design in Blaise®..267
6.2 DEP Window Components..268

6.2.1 FormPane...269
6.2.2 Grid..270
6.2.3 FieldPane ...271
6.2.4 InfoPane...272
6.2.5 Menu, Speedbar, and Status bar ..273

6.3 Modes of Behaviour ..274
6.3.1 Routing ..274
6.3.2 Checking..275
6.3.3 Error reporting ...275
6.3.4 Combining the behaviour modes ...275

6.4 DEP Customisation Files...277
6.5 Mode Library File..278

Developer's Guide v

6.5.1 Using the Mode Library Editor..281
6.5.2 Mode library file: Style settings ..284
6.5.3 Mode library file: Toggles ...292
6.5.4 Mode library file: Layout—Grids, FieldPanes, InfoPanes300
6.5.5 Viewing pages in the Mode Library Editor ...313
6.5.6 Common screen layout tasks ...317
6.5.7 Applying a mode library file..323
6.5.8 Detaching/Attaching a mode library file from a data model324

6.6 Data model properties..324
6.6.1 Set properties for system and user-defined types of the data model............325
6.6.2 Specify text for parallel blocks ..327
6.6.3 Languages properties...329
6.6.4 Status bar properties ..330

6.7 DEP Configuration File ...331
6.7.1 Using the DEP Configuration Program ...332
6.7.2 Editing a DEP configuration file ...335
6.7.3 Applying a DEP configuration file ..335

6.8 Menu File and the DEP Menu Manager ..336
6.8.1 Using the DEP Menu Manager..337
6.8.2 Editing and adding menu items ...338
6.8.3 Editing and adding speed buttons ..343
6.8.4 Applying a menu file ...345

6.9 Screen Layout Considerations ...345
6.9.1 Data density in the page...345
6.9.2 Font sizes ...345
6.9.3 New pages created for new Grids..346
6.9.4 Screen resolution ...346
6.9.5 Summary of screen layout factors ...346

6.10 Using the DEP...350
6.10.1 Invoking a behaviour mode: interviewing or data editing351
6.10.2 Entering responses ..353
6.10.3 Navigating between forms ..357
6.10.4 Errors ..360
6.10.5 Languages ...362
6.10.6 Multimedia..363
6.10.7 Watch window ..363

6.11 Running the DEP Outside the Control Centre...364
7 Basic Manipula ..367

7.1 Things You Can Do With Manipula..368
7.2 Starting Manipula ..369

7.2.1 Creating a Manipula setup...369

vi Blaise 4.5

7.2.2 Preparing a Manipula setup ...372
7.2.3 Running a Manipula setup...373
7.2.4 Manipula Run parameters..373

7.3 Inspecting Input and Output Data..375
7.4 Basic Operation of Manipula...377
7.5 File Formats Supported by Manipula ..378
7.6 Outline of a Basic Manipula Setup..379

7.6.1 USES section ...379
7.6.2 INPUTFILE section...381
7.6.3 OUTPUTFILE section...382
7.6.4 MANIPULATE section...382
7.6.5 Other file sections..384

7.7 Basic Examples..384
7.7.1 Extending a Blaise data file ...385
7.7.2 Initialising a Blaise data file ..385
7.7.3 Exporting a Blaise data file to ASCII ..386

7.8 Extending a Manipula Setup..387
7.8.1 AUXFIELDS section...388
7.8.2 SORT section...389
7.8.3 PRINT section ...390
7.8.4 SETTINGS section ..391

7.9 Running Manipula as a Separate Program...397
7.10 Example Manipula Setups...398

8 Advanced Manipula ..399
8.1 More Sections in Manipula..399

8.1.1 PROLOGUE section..399
8.1.2 UPDATEFILE section...400
8.1.3 TEMPORARYFILE section..400

8.2 More About Files...401
8.2.1 Linking files and the LINKFIELDS subsection ..401
8.2.2 Day file ..402
8.2.3 Message file...402
8.2.4 Customised information files...403
8.2.5 File methods WRITE, KEEP, WRITEALL, and KEEPALL403

8.3 Example File Structures...404
8.3.1 Address and roster information in one file ..404
8.3.2 Address and roster information in separate files ...405

8.4 More About MANIPULATE...407
8.4.1 Checking rules ...407
8.4.2 Form correctness status ...408
8.4.3 Block history..409

Developer's Guide vii

8.4.4 Counting forms ..409
8.4.5 AUTOREAD = NO ...410
8.4.6 Procedures ...411
8.4.7 Block computations ...412
8.4.8 Functions ...413
8.4.9 Exits from loops...413
8.4.10 Stopping Manipula..414
8.4.11 Debugging Manipula setups ...415

8.5 Manipula and Its Environment ..416
8.5.1 Command line parameter strings ...416
8.5.2 Environment variables ...417
8.5.3 Local area network (LAN) issues ..418

8.6 Reformatting Files ...420
8.6.1 One physical record to many ...420
8.6.2 Many physical records to one ..423

8.7 Importing Blocks of Data Into Blaise..428
8.7.1 Address and roster information in one file ..428
8.7.2 Address and roster information in separate files ...430
8.7.3 Two-stage ASCII read-in with UPDATEFILE ...430
8.7.4 Reading in two ASCII files at the same time...434

8.8 Exporting Blocks of Data from Blaise...437
8.8.1 ASCIIRelational file types...437
8.8.2 EMBEDDED and ordinary blocks ..439
8.8.3 Exporting one or a few blocks of data ...442

8.9 Miscellaneous Uses of Manipula...444
8.9.1 Making a test data set ..444
8.9.2 Creating a library file for classify..445

8.10 Performance Issues..445
8.10.1 Improving performance with Manipula features.......................................445
8.10.2 Skipping to a secondary key value..446
8.10.3 Data sharing ..448
8.10.4 Filters ..448
8.10.5 TEMPORARYFILE ...449
8.10.6 Block computations ..449
8.10.7 CONNECT = NO..450
8.10.8 AUTOCOPY = NO...450

8.11 Example Manipula Setups...450
9 Cameleon..453

9.1 Cameleon and Metadata ..453
9.2 Example Data Model ...454
9.3 Cameleon Translators Supplied with Blaise..456

viii Blaise 4.5

9.4 How to Start Cameleon..457
9.4.1 Running Cameleon ..458
9.4.2 Setting Cameleon run parameters..459

9.5 Cameleon Output Samples ..460
9.5.1 Output from spss.cif ..460
9.5.2 Output from sas.cif ..463

9.6 Programming in Cameleon..465
9.6.1 Basic Cameleon programming concepts ...466
9.6.2 Example program cameltst.cif ...466
9.6.3 Example program param.cif ..468
9.6.4 Example program wesvar.cif ...468
9.6.5 Analysing the wesvar.cif translator ...472
9.6.6 Using metadata loops...473

10 CATI Call Management System ..477
10.1 Blaise CATI Concepts...478
10.2 CATI Interviewing ..483

10.2.1 Make Dial screen ..484
10.2.2 Making appointments..485
10.2.3 Using a CATI menu ..489

10.3 Developing CATI Data Models ..490
10.3.1 INHERIT CATI and TCatiMana ..490
10.3.2 Special CATI fields...493
10.3.3 Appointment block..497
10.3.4 Additional blocks ..498
10.3.5 Initialise the data file...499

10.4 CATI Specification Program for Study Management ...500
10.4.1 Create a specification file..501
10.4.2 Survey days...503
10.4.3 Crew parameters ...505
10.4.4 General parameters ...507
10.4.5 Dial menu..511
10.4.6 Field selection ...513
10.4.7 Interviewers and Groups ...517
10.4.8 Time zones ..522
10.4.9 Time slices ..523
10.4.10 Quota control ..525
10.4.11 Parallel blocks...528
10.4.12 Daybatch select ...530
10.4.13 Daybatch sort ..533

10.5 CATI Management Program for the Supervisor ...533
10.5.1 Create daybatch...535
10.5.2 Summary ...542

Developer's Guide ix

10.5.3 Forms ..543
10.5.4 View active interviewers and groups ..546
10.5.5 Set environment options ...546
10.5.6 View history and log files ...547
10.5.7 Configure the Tools menu ..550
10.5.8 Running the CATI Management Program outside the Control Centre....550

10.6 Example: A Simple CATI Survey...551
10.6.1 Step 1: CATI data model ..551
10.6.2 Step 2: Initialising the data file ...553
10.6.3 Step 3: Survey specification..555
10.6.4 Step 4: Survey management..555
10.6.5 Step 5: Interviewing..556

10.7 CATI/CAPI Compatibility ..558
10.8 Other Considerations...559

11 CATI Technical Details...563
11.1 Rules for Inclusion in the Daybatch..563
11.2 Call Scheduler ...565

11.2.1 Selecting forms ...566
11.2.2 Routing back forms...567
11.2.3 Assigning priorities, starting times, and ending times568
11.2.4 Activating a form with medium or higher priority....................................571

11.3 Treatments...573
11.3.1 Treatment of dials ...575
11.3.2 Exceptions to general treatment rules ...575

11.4 Files Needed for CATI..576
11.5 History File..577
11.6 Glossary...580

Appendix A: Command Line Parameters...585
Command line prepare utility (B4CPars.exe)...585
Cameleon (cameleon.exe) ...586
CATI Emulator (btemula.exe)...586
CATI Management Program (btmana.exe) ...586
CATI Specification Program (btspec.exe)...587
Control Centre (blaise.exe)..587
Data Entry Program (dep.exe) ...587
Hospital (hospital.exe)...589
Manipula/Maniplus (manipula.exe)...589
Blaise Command Line Option Files ..590

Appendix B: Files in Blaise ...595

x Blaise 4.5

Instrument Files ...595
Blaise Data Files..596
External Data Files ..597
DEP Customisation Files...597
Data Entry Program Files for Stand-alone or Remote Operation................................598
Manipula/Maniplus Files for Stand-alone or Remote Operation.................................598
Files for Distribution for an Application ...598
Source Code Files..599
Folder Structures ...600
CATI Call Management System Files...601

Index ...603

Developer's Guide 1

1 Introduction

Blaise® is a powerful and flexible system used for computer-assisted survey
processing. Blaise® can perform Computer-Assisted Telephone Interviewing
(CATI), Computer-Assisted Personal Interviewing (CAPI), Computer-Assisted
Self-Interviewing (CASI), interactive editing, high-speed data entry, and data
manipulation and has full survey management capabilities. With Blaise® you can
perform various activities in an easy and user-friendly way.

Blaise® is used worldwide by many types of survey organisations, including
government, university, and private research companies. These organisations
conduct a wide variety of surveys such as labour force surveys, consumer price
surveys, multilevel rostering household surveys, panel surveys, business and
economic surveys, institutional surveys, health surveys, energy surveys,
environment surveys, agricultural surveys, and programs of related surveys.

Blaise features
Blaise provides a multitude of options and features for the survey developer:

• Virtually unlimited capacity for extremely large numbers of questions, edits,
and hierarchies

• Constant enforcement of all appropriate routes and edits without slowing
down during long interviews

• Concurrent interviewing of two or more respondents

• Hierarchical, alphabetical, and trigram coding schemes which can be used
together

• Lookups of information held in external files

• Metadata management and manipulation

• Data manipulation, re-coding, exporting, and importing

• Language switching during interviewing programmed to happen
automatically, through menus, or with a keystroke

• Question-by-question interview aids within Blaise itself or through WinHelp

• Multimedia capability for graphics, video, and audio

Chapter 1: Introduction

2 Blaise 4.5

• Mouse, pen, and touch-screen support

• Survey management and reports

• Sophisticated CATI call scheduling, including time zone adjustments,
interviewer assignments, and time slices to target respondents

• Full control of fonts and font sizes for questions, response text, and entry
cells

• Customisable user interfaces which can be modified for your organisation

• An audit trail that can be customised for your own needs

Beneficial for all
As a development system, Blaise is suitable for both the individual and the large
survey organisation. A control centre integrates many tools that help the
developer produce and test instruments. Blaise can be used for surveys in multiple
modes such as CATI and CAPI combined collections.

For interviewers, data entry personnel, and data editors, the interfaces are
powerful and elegant and have proven to be very efficient and popular. For
methodologists, Blaise allows data to be gathered correctly by using edits during
the interview.

For high-level managers, Blaise can increase productivity. During instrument
development, one system specification handles many tasks. During survey
production, data collection, coding, entry, and editing are all combined into one
or a few steps.

For systems managers, Blaise is a powerful, generalised system that can be
customised to the organisation’s needs, avoiding the need to develop expensive
in-house systems.

Easy to use
Subject matter specialists, statisticians, and programmers can become adept at
authoring Blaise instruments. The modular and reusable structure of the language
allows many surveys to use the same blocks of code with little or no
modification. This results in faster, surer development and better comparability
between surveys. The multi-mode nature of Blaise encourages (and can enforce!)
consistent specifications and conventions between multiple modes of use.

 Chapter 1: Introduction

Developer's Guide 3

1.1 Additional Capabilities

Use of DLLs:
There is little the Blaise language cannot do, but if you have a special need, you
can use Dynamic Link Libraries (DLLs) to extend the system. You can use DLLs
to display graphics, read data from a serial port, invoke specialised coding
software, or perform a complex calculation already programmed elsewhere.

Connecting to other processes:
Within a Blaise survey application one can interact with other processes, running
executables, DLLs, and ActiveX® components from the survey menu.

1.2 Advanced Blaise products

The Blaise system also includes separately licensed products that powerfully
extend and enhance the core system. These advanced products are documented in
separate publications.

Maniplus
Maniplus is an interactive menuing and execution system that can build survey
management systems around instruments to organise the users’ many tasks. With
Maniplus you can implement a multi-survey CAPI laptop management system or
a data flow and survey management system, each completely customised.
Maniplus is value-added.

Blaise Component Pack
The Blaise Component Pack (BCP) consists of a number of COM and ActiveX®
components. Using industry-standard development tools such as Microsoft®

Visual Basic™, C++®, or Borland® Delphi™, these components allow for instant
access to Blaise instrument metadata and data, as well as to relational databases
via ActiveX® Data Objects (ADO) /OleDB. The BCP can only be used in
combination with the basic system.

Chapter 1: Introduction

4 Blaise 4.5

1.3 Blaise Documentation

The Blaise documentation consists of:

• Developer’s Guide

• Reference Manual (also available on-line in the Blaise program)

• Maniplus Manual

This Developer’s Guide is organised as a reader, explaining and describing many
features of the system. The Reference Manual and the Maniplus Manual contain
more detailed technical details.

This reader is arranged in Chapters according to global parts of the Blaise system.
The first chapters explain the basics of the Blaise system. The remaining chapters
offer you comprehensive descriptions of specific domains within the system.

This Developer's Guide includes the following chapters:

• Chapter 1, Introduction: Overview of Blaise and introduction to the
Developer's Guide.

• Chapter 2, The Blaise Control Centre: How to use all the features of the
Blaise Control Centre efficiently to produce quality data collection and
editing instruments.

• Chapter 3, Data Model Basics: Covers the basic Blaise language used to
construct a data model.

• Chapter 4, Blocks and Tables: Introduces blocks, which are an important unit
of construction for large applications.

• Chapter 5, Special Topics: Covers special topics on data model construction
that are needed for some applications but not needed for others. Topics
include coding, procedures, Dynamic Link Libraries, external files, layout
features, and sophisticated navigation.

• Chapter 6, The Data Entry Program: A description of the Data Entry
Program (DEP) and how to use and customise it to suit your needs. Topics
include the DEP window components, changing modes of behaviour, and
customising the interface.

Chapter 1: Introduction

Developer's Guide 5

• Chapter 7, Basic Manipula: Explanation of the Manipula program for simple
data management and survey management activities. Topics include reading
data in and out of a Blaise data model, writing reports, and describing data.

• Chapter 8, Advanced Manipula: Explanation of how to handle difficult file
structures and specialised needs using Manipula.

• Chapter 9, Cameleon: How to use the Cameleon metadata utility.

• Chapter 10, The CATI Call Management System: How to create a data model
for Computer Assisted Telephone Interviewing (CATI) and how to harness
the power of the Blaise CATI Call Management System.

• Chapter 11, CATI Technical Details: Provides background information and
technical details about the CATI Call Management System.

• Appendix A, Command Line Parameters

• Appendix B, Files in Blaise

1.4 Blaise Examples

In addition to the text of the manual, numerous example data models are included
with the system distribution1, which correspond to examples in the Developer's
Guide. They use the fictitious National Commuter Survey as a vehicle to illustrate
topics from this guide.

Statistics Netherlands wishes to thank the U.S. Department of Transportation’s
National Highway Traffic Safety Administration (NHTSA) for providing make,
model, and model year data for passenger vehicles. These data were used in
several coding examples in the manual. The data were based on vehicles involved
in fatal crashes in 1992 as reported in NHTSA’s Fatal Accident Reporting
System.

1.5 Conventions Used in This Guide

We have used some standard conventions throughout this manual to make it easy
to use and understand.

1 The example files are available in the subdirectory DOC of the Blaise system directory after a
complete installation of the Blaise system. The Blaise system directory is the directory where the
file BLAISE.EXE is available.

Chapter 1: Introduction

6 Blaise 4.5

Menu commands
All menu commands are in the format: Menu name Command. For example,
the command File Save means to first select the File menu item, and then
select the Save command within the menu.

Mouse commands
We’ve used the following terms to indicate mouse commands:

• Click: Click the left mouse button once.

• Double click: Click the left mouse button twice.

• Right click: Click the right mouse button once.

• Drag and drop: Use the mouse to select one or more items, hold the left
mouse button down, and move the items to another part of the screen or
window.

• Italicised text: References to windows, dialog boxes, menus, buttons, and
speed buttons are italicised in the text.

• ! Symbol: Special notes are formatted with this symbol to draw your
attention to them. When you see this symbol, you know that the information
is a helpful reminder or of special importance

• Language: All Blaise language key words are capitalised in the text.

In all cases, the term folder is used to refer to a directory.

Developer's Guide 7

2 Blaise Control Centre

The Blaise® Control Centre is the development shell that contains the Blaise®
tools and programs you will work with when developing instruments. From the
Control Centre you manage data models, programs, utilities, and configuration
files for the instrument.

This chapter describes the Control Centre and its various components. Many of
the activities initiated from within the Control Centre are also discussed in
subsequent chapters.

We assume that you have already installed the Blaise system correctly on your
computer. We also assume that you have a good working knowledge of
Windows®.

2.1 Opening the Control Centre

Open the Control Centre by clicking its shortcut or by clicking the Windows®
Start button, selecting the appropriate choices in the Start menu, and clicking the
Blaise option on the submenu. This will start and open the Blaise Control Centre
as shown in the following figure.

Figure 2-1: Blaise Control Centre

Chapter 2: Blaise Control Centre

8 Blaise 4.5

When you activate the Control Centre for the first time, you will see an empty
desktop with menu options and a Speedbar.

Menus
There are several ways to activate menu options: press the Alt key and then the
first letter of the menu option; click the menu option with the mouse; or use a
shortcut key, which is a special key combination. (Refer to the table of shortcut
keys in the Blaise text editor section of this chapter.)

When you activate a menu, commands followed by a symbol have an extended
menu box that will appear when you select the command. Commands followed
by an ellipsis (…) will display a dialog box for you to provide additional
information.

Add-Ins
It is possible to add specialized capabilities to the Control Centre main menu with
the Add-Ins menu selection.

Figure 2-2 Control Centre Menu with Add-Ins Menu Selection

Add-Ins launch an ActiveX® control. These ActiveX® controls are custom
developed in Visual Basic or other development system. The ActiveX® process
may return information to the Control Centre either as a string, or as a file that the
Control Centre opens.

Examples of possible Add-Ins include:

• Run an ActiveX wizard that generates some Blaise code and inserts the code
at the cursor in the editor, or as a new code window in the editor.

• Run an ActiveX control that accesses a specialized code archive kept in an
external database. Select the code desired and it is inserted in the current file.

Details on building an ActiveX control as an Add-In, and using the Add-In
Manager to setup the custom menu selection are covered in the Help topic “Add-
Ins for the Blaise Control Centre”.

 Chapter 2: Blaise Control Centre

Developer's Guide 9

Speedbar
 The Control Centre has a Speedbar with speed buttons that allow you to activate
some Blaise functions quickly. To see a description of a speed button's function,
place the mouse pointer on the speed button but do not click on the button. A
small pop-up window with descriptive text called a Tooltip appears.

2.1.1 File types in the Control Centre
There are many types of text files that you can open and work with in the Control
Centre. The following table summarises some of the common text files. The file
extensions that are listed are recommended but not required. A complete list of all
Blaise file types is in Appendix B.

Figure 2-3: Common file types
File Type Extension Description

Blaise Data
Model

.bla A file that states the definition and structure of
the survey data and their interrelationships. You
create instruments from the data model file.

Included File .inc A file that contains additional program code,
such as sub-parts of a data model or a file
manipulation setup.

Library .lib A file of type definitions.

Cameleon .cif A file that transforms Blaise meta information
files into syntax that can be used by statistical or
database programs.

Manipula or
Maniplus

.man A file that contains program code to move or
manipulate data using Blaise's file manipulation
utility.

Open a file
To open a file, select File Open from the menu and select a file. The file
appears in the Control Centre. Figure 2-4 shows the Blaise data model file
commut14.bla, which can be found in \Doc\Chapter4 of the Blaise system
folder.

Chapter 2: Blaise Control Centre

10 Blaise 4.5

Figure 2-4: Simple data model

Drag and drop
Blaise follows standard Windows® conventions and therefore supports drag and
drop capability. You can drag a text file from the Windows® Explorer or desktop
directly into the Blaise Control Centre. The drag and drop method is very useful
if you want to open several files in the Control Centre at one time. You can select
files in the Windows® Explorer and then drag and drop them into the Control
Centre in one step.

Open a file from within a file
You can open a text file from within a Blaise file. For example, in a data model
you might reference another file that contains information needed to run your
model. You can open this file simply by placing your cursor on the file name and
pressing Ctrl-Enter. In the above example, the line INCLUDE BPerson.inc
references such a file. If you placed the cursor directly on the text BPerson.inc

in the file, and then pressed Ctrl-Enter, the BPerson.inc file would open.

View file history list
You can view a list of your most recently opened files. Select File Reopen and
the Reopen file dialog box appears. Scroll through the list, select the appropriate
file, and click the OK button.

 Chapter 2: Blaise Control Centre

Developer's Guide 11

2.1.2 Blaise text editor
When you open a text file in the Control Centre, you automatically enter the
Blaise text editor. We will not discuss the editor in full detail, since it is very
similar to many other commonly used editors, but we will mention a few features.

Context-sensitive help
Blaise provides context-sensitive help for key words that appear in files in the
text editor. Key words are Blaise language words. (The Blaise language is
discussed in detail in Chapters 3, 4, and 5.) With the cursor on a key word, press
F1. The Blaise Help window appears, showing the topic related to the key word.
If you press F1 when the cursor is not on a key word, the Editor help topic
appears.

For example, if you placed the cursor on the key word DATAMODEL, the
following Help window would appear.

Figure 2-5: Help window for key word

Blaise Help often contains samples of Blaise language syntax. You can easily cut
and paste the Help samples into your own data model file.

Chapter 2: Blaise Control Centre

12 Blaise 4.5

Shortcut keys
Blaise provides some shortcut keys to make it easier to use the editor. Some of
these are standard Windows® shortcuts and others are specific to Blaise. The
following table summarises the shortcut keys. You can select a block of text as in
any other Windows® editor or word processor by using the mouse or pressing the
Shift and down arrow keys simultaneously.

Figure 2-6: Editing shortcuts
Editing Shortcuts Description

Ctrl-A Select all the text in the file

Ctrl-C Copy a block of text

Ctrl-K-B Mark the start of a block for indenting or outdenting text (see
Tab, Shift-Tab)

Ctrl-K-K Mark the end of the block for indenting or outdenting text (see
Tab, Shift-Tab)

Ctrl-R Replace text

Ctrl-V Paste text

Ctrl-X Cut a block of text

Ctrl-Z Undo the last action (performs multiple times)

Shift-Ctrl-Z Redo the last undo (performs multiple times)

Ctrl-Spacebar Insert non-printing space

Tab Move highlighted text over a space

Shift-tab Move highlighted text back a space

F1 Context sensitive help for word under the cursor

F12 Convert text of entire word at the cursor position from
lowercase to uppercase

 Chapter 2: Blaise Control Centre

Developer's Guide 13

Figure 2-7: Navigation shortcuts
Navigation shortcuts

F3 Find next/replace next

F7 Reopen files

F9 Prepare a file

Ctrl-F Find text

Ctrl-O Open a file

Ctrl-P Print a file

Ctrl-S Save a file

Ctrl-F4 Close the editor window and all files displayed on
different tabs

Shift-F4 Close the file of the currently active tab

Ctrl-F6 Go to another window

Ctrl-F9 Run a file

Ctrl-Enter on a file name Open that file

Home Go to the beginning of the line

End Go to the end of the line

Ctrl-Home Go to the beginning of the file

Ctrl-End Go to the end of the file

Ctrl-Tab Go to next tab within one edit window

Ctrl-Shift-Tab Go to previous tab within one edit window

Status bar
There is a status bar at the bottom of the editor window. The status bar displays
the line number and column number at which the cursor is positioned. When the
cursor is on the very first character of the very first line of a file, this number is
1:1. As you move the cursor around in the file, this number changes to reflect the
cursor's position.

Go to a line
You can go to a specific line number of your file. Select Edit Go to line from
the menu. Type a line number in the dialog box and click the OK button.

Chapter 2: Blaise Control Centre

14 Blaise 4.5

Indenting/outdenting block
The editor supports indenting and outdenting a selected block by using the
Tab/Shift-Tab key. One may select a block using the mouse or the keyboard.
With the keyboard, use Ctrl-K-B to mark the start of the block and Ctrl-K-K to
mark the end of the block. See Editor keys for a review of all available special
editor keys.

Editor pop-up menu
A very flexible way to handle many functions and options with the Blaise editor
is to use the pop-up menu. Right-click when the cursor is over the editor and the
menu appears. Now one can close the current page, open a file named at the
cursor’s current position, and use the following additional functions:

Figure 2-8: Editor pop-up menu

• Enhanced find. The enhanced find allows you to search for a string across all
include files used by your data model or Manipula setup. You can limit the
search to comments only or search all text. Find locates all lines of code
containing the string and displays them in the result list window. Scroll
through the result list to locate the instance for which you are looking.
Pressing the space bar while you have the focus on the instance in the result
list, or double clicking on the item with the mouse, highlights the particular
instance in the editor. If necessary, it will open the file and transfer the focus
to the file containing the highlighted instance. For details open the Enhanced
Find form and press F1.

 Chapter 2: Blaise Control Centre

Developer's Guide 15

• Show Explorer. A special view on your source code in an edit file is also
available in the editor. You can use this view to navigate your source code,
even if the source code is not syntactically correct yet. There are two ways to
enable this view: either right-click on the Editor window and select Show
Explorer from the pop-up menu or select this option from general
environment options. Now in the left-side panel is a tree structure showing
the blocks in the data model. Clicking on Fields or Rules will cause Blaise to
move the cursor to the selected Fields or Rules sections in the editor panel.
Double clicking on a particular file will open that file in the current window.

Figure 2-9: Explorer view of source

Editor options
You can set options for the Blaise text editor. To set options for the currently
active window only, right-click on the Editor window and select Display options
from the pop-up menu. To set options for the current window and all
subsequently opened files, select Tools Environment Options from the menu
and select the Editor tab.

Chapter 2: Blaise Control Centre

16 Blaise 4.5

Figure 2-10: Environment Options

Select options as described below.

• Auto indent mode. Pressing the Enter key will move the cursor to a new line
under the first non-blank character in the preceding line. This option is useful
to keep your source code readable.

• Use tab character. Blaise will recognise a tab as a character and not just as
white space.

• Smart tab. Tab stops will automatically follow the spacing of the previous
line in the data model, indenting to the next full word. This makes indenting
in your data model easier.

• Show bookmarks. Bookmarks that have been set in the margin of the editor
windows will be shown. If set, the margin will be wider.

• Keep trailing blanks. Blaise will recognise spaces at the end of a line. If this
option is not checked, any spaces inserted at the end of a line will be ignored.

• Find text at cursor. Blaise will automatically insert the word at which the
cursor is placed when you invoke Find.

• Create backup. Blaise will create a backup file each time you save a file. The
backup file will have a .bak extension.

 Chapter 2: Blaise Control Centre

Developer's Guide 17

• The Font and Size boxes change the display font of the text editor. Only non-
proportional fonts are available in the Blaise text editor.

• Syntax highlighting. Syntax highlighting changes the colours and attributes of
your text in the Editor, making it easier to identify quickly parts of your code.
You can set the colours and attributes for the following different elements of
your text: Background, Comment, Identifier, Number, Reserved word, String,
and Symbol. The system comes with a predefined list of tokens that will be
treated by the editor as reserved words. It is possible to modify this list by
adding or removing lines from the text file Blaise.sht. Syntax highlighting
is only available for files with specified extensions. These file extensions can
be specified under Tools Environment Options General.

Figure 2-11: Setting editor colours

Setting editor colours
You can customise the colours used for syntax highlighting by the editor in the
Colour tab of the Editor page of Environment Options.

Display several edit files in one edit window
If this option is active when you load a file, a new edit file will be opened in the
currently focussed edit window. If the currently active window is not an edit
window (it is a structure browser or database browser window), a new edit
window will be created when you load a file. You can navigate between the
different tabs within one edit window with Ctrl-Tab or Ctrl-Shift-Tab (or by

Chapter 2: Blaise Control Centre

18 Blaise 4.5

clicking on the relevant tab). You can close a tab using the close option in the
menu or the close page option in the pop-up menu (Shortcut Shift-F4; you can
close the complete edit window with Ctrl-F4).

2.2 Control Centre Functions

This section describes some of the Control Centre's major features and functions,
including preparing Blaise files, executing programs, organising files into
projects, managing data files, configuring tools, setting environment preferences,
and creating simple Manipula files.

2.2.1 Prepare command
The Prepare command checks source code files for syntax errors. The process
creates prepared files that you will need to continue with various survey
development steps. For example, when you successfully prepare a data model,
two files are generated: one file with a .bmi extension and one file with a .bdm
extension. These files are called meta information files and are used by Blaise
when you run the Data Entry Program.

You will use the Prepare command for data models, libraries, Manipula files,
Maniplus files, and Cameleon files. The following table shows the files that result
from preparing the different file types.

Figure 2-12: Resulting files from the Prepare command
Source Code File Type Resulting Prepared File

Data model (.bla) .bdm (screen layouts)

 .bmi (meta information file)

Manipula file (.man) .msu

Maniplus file (.man) .msu

Library file (.lib) .bli

Cameleon file (.cif) Checks the .cif file; no prepared file created

How to prepare
To prepare a file, first open the file. Select Project Prepare from the menu, or
click the Prepare speed button on the Speedbar, or press F9. You do not have to
indicate to Blaise the type of file you are preparing; Blaise automatically detects

 Chapter 2: Blaise Control Centre

Developer's Guide 19

the file type. If you have created a project and have that project open, Blaise will
prepare the primary file for that project. If you have not created a project, or have
not set a primary file, Blaise will prepare the file in the active window. Projects
are discussed later in this chapter.

Blaise begins checking the file and a dialog box appears as it does so. If there are
no errors, Blaise displays the message Syntax OK.

Figure 2-13: Syntax OK message

If there is an error, Blaise displays the message An error occurred in the dialog
box. Details on the error are shown in the panel at the bottom of the Blaise form.
The message includes the name of the file and the position in the data model
where the error was found. For example, one of the key Blaise language words is
FIELDS. If you have a mistake in your data model and use the word FIELD instead,
you will get the following message:

Chapter 2: Blaise Control Centre

20 Blaise 4.5

Figure 2-14: Sample error message during prepare

The syntax error will remain visible in the result list window at the bottom of the
screen after you have clicked OK to close the dialog box. You can navigate to the
position of the syntax error in your source code by double clicking on the error
you wish to address.

There are other errors that might be more difficult to find, such as a missing end
double quote ("), single quote ('), or brace (}). These symbols are very
meaningful to the Blaise language. If one is missing in your data model and you
receive an error message when you return to your file, the cursor will jump to the
spot where Blaise encountered the error, but not necessarily to where the missing
element should be. Using syntax highlighting helps identify the source of errors
more quickly and easily.

2.2.2 Build Command
Choose Project Build if you want to prepare your data model or Manipula
setup and all the files on which they depend. The build will prepare all uses data
models and all libraries (but only if the source code can be located).

 Chapter 2: Blaise Control Centre

Developer's Guide 21

2.2.3 Run command
The Run command allows you to start and run a prepared Blaise file or a
program. You can run a data model (which starts the Data Entry Program),
Manipula (to manipulate data), Maniplus (for survey management), and
Cameleon (to recast Blaise meta information for use by other software packages).

Using Run
To start the Run command, open the file. Then select Run Run from the menu,
or click the Run speed button on the Speedbar, or press Ctrl-F9. You do not need
to specify the type of file you are running; Blaise automatically detects the file
type.

If you have created a project and have that project open, Blaise will run the
primary file for that project. If you have not created a project, or have not set a
primary file, Blaise will run the file in the active window.

If, however, the active window contains the Database or Structure Browser,
Blaise will start the Data Entry Program (DEP) for the data model that is in the
Structure Browser, using either the data file in the Database Browser or the data
file indicated in the DEP run parameters. In this case, Blaise will ignore the
primary file. The Database and Structure Browsers are discussed later in this
chapter.

You must first prepare a file before you can run it. If you try to run an unprepared
file, or a file that was prepared and then changed, Blaise will prompt you to
prepare the file again by displaying the message Prepared file [filename] on disk
is not up-to-date. Prepare again before running?

An example: Running the Data Entry Program
One use of the Run command is to start the Blaise DEP. First, open and prepare
the data model to be used. Select Run Run from the menu. The DEP starts up
from the Control Centre and appears on your screen.

The following sample shows the DEP when running the prepared
commut14.bla data model. (Commut14.bla can be found in \Doc\Chapter4
of the Blaise system folder.)

Chapter 2: Blaise Control Centre

22 Blaise 4.5

Figure 2-15: Data Entry Program

2.2.4 Setting run parameters
When you run the Data Entry Program, you have the option to set certain
parameters for the Data Entry Program, Cameleon, and Manipula. The details on
setting these parameters are discussed in their respective chapters. We mention
them here because you will want to be aware of the options as you create and test
your data models.

To set the run parameters, select Run Parameters from the menu and the Run
Parameters dialog box appears. For Data Entry Program parameters, refer to
Chapter 6. For Manipula run parameters, refer to Chapter 7. For Cameleon run
parameters, refer to Chapter 9.

 Chapter 2: Blaise Control Centre

Developer's Guide 23

Figure 2-16: Run Parameters dialog box

The Load button displayed in the bottom of the dialog box allows you to load the
command line parameters from a Blaise command line option file. The Store
button allows you to write the command line parameters to a Blaise command
line option file. For more information on Blaise command line option files, see
Appendix A.

2.2.5 Setting General Environment Parameters
There are other settings under Environment Options that can be adjusted to
customise the Control Centre environment.

Chapter 2: Blaise Control Centre

24 Blaise 4.5

Figure 2-17: Environment Options General page

Use the General page of the Environment Options dialog to specify your Control
Centre configuration preferences:

• Change folder on open. Changes the working folder to the last folder used to
open/save a file.

• Save desktop. Saves the arrangement of your desktop when you close a
project or exit the Control Centre. When you later open the same project, all
text files opened when the project was last closed are opened again regardless
of whether or not they are used by the project. Database browsers and
structure browsers are not reopened.

• Open edit file only once. Keeps you from opening the same text file in two
separate windows.

• Minimise on run. Causes the Control Centre to minimise itself when Run is
invoked.

• Maximise on open. Causes each newly opened file to be maximised in the
Control Centre desktop.

• Check for changed files. Causes the Control Centre upon receiving the focus
to check if a current edit file has been changed on disk. If yes, you will be
prompted to reload that file.

 Chapter 2: Blaise Control Centre

Developer's Guide 25

• Use tab sheets. Enables using one edit window for multiple edit files. Each
edit file can be accessed via a separated tab in the edit window.

• Source extensions. Allows you to add to the default file extensions that
appear in the File open dialog box when you choose File Open.

• Syntax extensions. Allows one to specify, by extension, which files will
display syntax highlighting information. The default extensions are .BLA,
.MAN, .INC, .PRC and .LIB. Also new files (untitled files with no file name)
are considered to be files that need to display syntax highlighting
information. As soon as you specify new extensions you will also need to
include the existing defaults again (if needed).

2.2.6 Projects
When you develop and test an instrument in Blaise, you will probably work with
several files at one time. You will also have meta information files and output
files that you will need to use.

To help keep track of all your files, it is valuable to use a project. A project
contains a list of all your files and allows you quick access to them, even if they
are in several different folders. You can also specify folders for source files, work
files, meta files, and output files for each project. It is an efficient way to keep
files organised, and to prevent you from losing files or data during development.

Particularly for larger scale instruments and those with multiple developers, using
the Blaise project capability is critical.

Create a project
To create a project, select File New Project from the menu. A blank window
appears in the Control Centre with the name Untitled at the top.

To add files to the project, select Project Project Manager from the menu. The
Project Manager form appears.

Chapter 2: Blaise Control Centre

26 Blaise 4.5

Figure 2-18: Project Manager form

Click the Add button and select files to add to the project. The file names appear
in the Project files list as you add them.

Designate a primary file for the project by clicking the arrow in the Primary File
box. The primary file is the file that will be run and prepared when those
commands are invoked when the project is open. You do not need to have the
primary file open to run or prepare it. You can select a primary file from a data
model (.bla), Manipula (.man), or Cameleon (.cif) file.

When you check Relative project file, all folder and file names stored in the
project file will be made relative to the folder where the project file is stored (the
so-called project root). This will make it possible to copy a complete project to a
different root.

You can also add a file to a project by right clicking on a file in the editor
window. A pop-up menu appears.

 Chapter 2: Blaise Control Centre

Developer's Guide 27

Figure 2-19: Pop-up menu when right-clicking in editor window

From here you can add the file to the project, set the file as the primary file, add
the included files to the project, or clear the current primary file.

To save a project, select File Save Project As from the menu. The default file
extension is .bpf.

Open an existing project
To open an existing project, open the project file. The name of the project and its
primary file appear in the title bar of the Control Centre window. The primary file
is enclosed by < >. For example, the following sample is the title bar for the
project titled commut.bpf, and the primary file is commut14.bla.

Figure 2-20: The Title Bar of the Control Centre Window

After you have opened the project file, open the Project Manager to access the
files.

Chapter 2: Blaise Control Centre

28 Blaise 4.5

Project options
You can set various options for a project. You can set project options for a file
that is not in a project, as well as for an actual project.

When you set project options for a file, such as a .bla file, the options will apply
to that file when it is open. Using either approach, first open the project, and then
select Project Options from the menu. The Project Options form appears.

Figure 2-21: Project Options form

In larger Blaise development efforts it is often helpful to place different types of
files in separate folders. In the Folders section you can specify these folders as
described below.

• Source search path. Specify a path where Blaise will search for include files
for which no path has been specified in the file name. You can specify more
than one path. Separate multiple path names with a semicolon (;). Relative
and absolute path names are allowed, including path names relative to the
logged position in drives other than the current one. Blaise will search the
paths until an include file is found.

• Output folder. Specify the folder to which the prepared files (.bmi, .bdm,
.bli, and .msu) will be written. If this box is left blank, they will be written
to the folder in which the source file (.bla, .lib, or .man) is located.

 Chapter 2: Blaise Control Centre

Developer's Guide 29

• Meta search path. Specify the path where Blaise will search for meta files for
which no path has been specified.

• Working folder. Specify the folder Windows will use as the working folder
for other Blaise programs that are run for the project, such as Manipula or the
Data Entry Program.

In the Library section one identifies a specialised mode library to be used in the
project. (See Chapter 6 for more information on the mode library file.)

• Mode library. Specify the mode library file to be used when Blaise prepares
the data model. If this box is left blank, Blaise will use the mode library file
in the working folder; if that isn't present, it will use the file in the system
folder.

• Check layout identifiers during prepare. Check to display a message if layout
identifiers are not found when the data model is prepared. If this is not
checked, you will not be notified if Blaise did not find the identifiers.

In the Optimisation section:

• Optimised checking. This option is implemented for backward compatibility
only. In general, there is no reason to disable this option. See the on-line help
for details. The information on optimised checking is stored in the extended
meta file (the .BXI file). This means changing this option requires re-
preparing existing models to make use of the optimised checking.

The information on optimised checking is stored in the extended meta file (the
.BXI file). In general there is no reason not to check this option.

Project Version Information
Use the Version Info tab of the Project|Options dialog to set the version
information of your project. This version info will be stored in your prepared data
model, your prepared Manipula/Maniplus setup and it will be stored in the Blaise
database when created.

Chapter 2: Blaise Control Centre

30 Blaise 4.5

Figure 2-22: Project Version Information

Check the Include version information in project box to enable this feature. Then
version information can be entered and will be included in the prepared data
model file or the prepared Manipula setup. Individual information items are:

• Module Version Number. Major, Minor, Release, and Build each specify an
unsigned integer. The combined string defines a version number for the
application.

• Auto-increment build number. If enabled, the build number will be
incremented each time the Project|Prepare or Project|Build results in a
successful preparation.

• CompanyName. The company that produced the file.

• FileDescription. File description.

• FileVersion. File version number.

• InternalName. File internal name.

• LegalCopyright. File copyright notices.

• LegalTrademarks. Trademarks and registered trademarks that apply to file.

 Chapter 2: Blaise Control Centre

Developer's Guide 31

• OriginalFilename. Original file name, not including path.

• ProductName. Name of product that file is distributed with.

• ProductVersion. Version of product that file is distributed with.

• Comments. Additional information for diagnostic purposes.

You can edit the key value in the Value column.

2.2.7 Data model properties
A large number of default display characteristics of a data model can be
customised. This is done using settings in the Data model Properties form. The
properties are then saved to a file <data model name>.bxi.

A full discussion of data model properties requires understanding of important
elements in the Blaise language, including types, parallel blocks and languages.
These elements are covered in Chapter 3. Then, in section 6.6, we will examine in
detail setting data model properties in the Control Centre.

2.2.8 Data file management
Blaise provides a few data file management options from within the Control
Centre. You can rename, copy, move, create, or delete a Blaise data file. These
options are meant to help you when authoring an instrument, but they do not
represent the full spectrum of Blaise data file management. This menu option
works only for Blaise data files.

Rename, copy, move, create, or delete
The procedure for each of the file management options is basically the same, with
only a few minor variations.

Select Database Data File Management from the menu, and then choose the
appropriate option. A dialog box appears with a title that corresponds to the
option you chose. The following sample shows the dialog box that appears when
you select Copy.

Chapter 2: Blaise Control Centre

32 Blaise 4.5

Figure 2-23: File to Copy dialog box

Select a file and click the Open button. The title of the dialog box changes to
reflect your action. In the Copy example, the title of the dialog box changes to
Copy to.

If you are renaming a file, type the new file name in the File name box. If you are
moving or copying a file, you can select a new folder for the file. If you are
deleting a file, this step does not occur. Click the Save button.

Blaise displays a message to confirm your action. To complete the task, click the
Yes button; to cancel, click the No or Cancel button.

2.2.9 Configuring tools
You can configure the Tools menu to run other programs from within the Blaise
Control Centre. This is often quicker than leaving the Control Centre, running the
program, and then reactivating the Control Centre. When you do this, an option
for that program appears in the Tools menu. You can configure the Tools menu to
run Blaise programs as well as non-Blaise programs.

Add a tool
To add a tool, select Tools Configure Tools from the menu and the Tools Menu
Editor dialog box appears.

 Chapter 2: Blaise Control Centre

Developer's Guide 33

Figure 2-24: Tools Menu Editor dialog box

If this is the first time you have added tools, the Tools list in the box will be
empty. Click the Add button and the Tools Edit dialog box appears.

Figure 2-25: Tools Edit dialog box

Complete the following items (The only required item is the Program box.):

• Menu title. Specify the name that you want to be displayed in the menu.

• Program. Specify the name of the file that will execute the program you are
adding. This file name will most likely have an extension of .exe, .com,
.bat, or .pif. Use the Browse button to select the file, if necessary.

• Working folder. Specify the folder Windows will switch to when the program
is started.

• Command line. Specify applicable command line parameters. Valid
parameters are described in Figure 2-26.

Chapter 2: Blaise Control Centre

34 Blaise 4.5

Figure 2-26: Command line parameters
Parameter Description

$ASK() Displays a dialog box in which you can specify the
command line. In the parentheses, you can specify
a value that will be the default value on the edit line
of the Ask dialog box.

$PROJECTNAME Inserts the name of the current project on the
command line.

$SAVEALL Saves all changed edit files before starting the
program.

$DOCNAME Inserts the name of the file in the active window on
the command line.

$PRIMARY Inserts the name of the primary file on the command
line.

When all boxes are filled, click the OK button.

The Tools Menu Editor dialog box reappears and the program appears in the
Tools list. You can then use the Edit button to change the set-up for any of the
tools, or the Remove button to remove a tool. Click the red arrow buttons to move
an item up or down in the list. When you are finished, click the Close button.

Start a program
To start the program you added, select Tools from the menu, and then select the
program. Any programs added will be listed at the bottom of the menu.

An example: Adding web link
To start a web browser and specify a URL to launch, select Tools Tools from
the menu and the Tools Menu Editor dialog box appears. Complete the box as
shown in Figure 2-27.

 Chapter 2: Blaise Control Centre

Developer's Guide 35

Figure 2-27: Tools Edit dialog box completed for IBUG web link

Click the OK button to return to the Tools Menu Editor box and then click the
Close button. The Blaise User Group Web Site option now appears in the Tools
menu and can be invoked from the Control Centre, as shown in Figure 2-28.

Figure 2-28: Tools menu with Blaise User Group Web Site link

2.2.10 Manipula Wizard
Manipula is a Blaise tool used to manipulate data and data files. For example, you
can create a Manipula file that will transfer data from an input file to an output
file.

The Manipula Wizard allows you to create simple Manipula files quickly and
easily. Using the Wizard, you can create Manipula files to transfer from:

• Blaise to ASCII

• Blaise to ASCIIRelational

• Blaise to Blaise

Chapter 2: Blaise Control Centre

36 Blaise 4.5

• ASCII to ASCII

• ASCII to Blaise

• ASCIIRelational to Blaise

• OleDb to ASCII (see Section 2.2.14)

• OleDb to Blaise (see Section 2.2.14)

Manipula is discussed in great detail in Chapters 7 and 8. This section describes
how to create a simple Manipula setup file using the Manipula Setup Wizard.

Run the Wizard
To run the Manipula Setup Wizard, select Tools Manipula Setup Wizard from
the menu. The wizard dialog box appears.

Figure 2-29: Manipula Setup Wizard dialog box

The Wizard displays a series of dialog boxes that prompt you for information.
When you complete each box, click the Next button to continue. Each step is
described below.

Indicate the type of Manipula setup. Click the down arrow to the right of the box
to see all the options.

Specify the input data file name and the meta file name.

Specify the type of records you want to include in the output file. Clean records
are error-free. Suspect records have soft errors that are not suppressed. Dirty

 Chapter 2: Blaise Control Centre

Developer's Guide 37

records have hard errors. NotChecked includes records that were not checked for
cleanliness. The default is to include all records.

Specify whether you want to copy or move the records from the input data file to
the output data file. If you choose to move the records, they will be deleted from
the input file. The default is to copy the records.

Specify the name of the output data file and the name of the meta file. If you are
transferring to an ASCII file, be sure to indicate a meaningful file extension, such
as .asc. If you are transferring to a Blaise data file, the file extension will be
automatically assigned.

Specify if you want to create a new output data file or append to an existing
output data file of the same name. If you already have an output file of the same
name and choose to create a new file, the original output file will be deleted. Be
sure this is what you want to do.

If the output file is to be an ASCII file, indicate if you want a character to
separate the fields. This is optional. To specify a character, click the Field
separator specified box, then choose a character from the list. If you specify a
field separator, you also have the option to specify a string field delimiter by
clicking the box and selecting a character.

Specify a file name for the Manipula file. The Wizard will generate this file but
you must specify a name for it.

Click the Finish button.

Blaise creates the Manipula setup file and the file opens in the Control Centre.
The following sample is a Manipula file created to convert a Blaise data file to an
ASCII data file.

Chapter 2: Blaise Control Centre

38 Blaise 4.5

Figure 2-30: Sample Manipula file created with Manipula Wizard

You can use the text editor to modify the Manipula file if necessary.

Many Manipula setups are more complicated than this. Nevertheless, using the
Manipula Wizard is a good way to start any Manipula setup. For information on
creating and running Manipula files and their results, refer to Chapters 7 and 8.

2.2.11 Monitor utility
The Monitor utility can be used to monitor Blaise data files. This is particularly
useful in a network environment where multiple users are working on the same
data model simultaneously. Monitor provides a real-time summary of who is
accessing the data file.

To run Monitor, select Database Monitor usage, or run the program
monitor.exe, which is in the Blaise system folder. Open a Blaise data file and
the Monitor form appears.

 Chapter 2: Blaise Control Centre

Developer's Guide 39

Figure 2-31: Monitor form

This box shows the number of different processes currently active on the data
file.

A distinction is made between exclusive write, exclusive read, share write, and
share read processes.

• An exclusive write process has exclusive access to the database for both
writing and reading. Such a process is active when Manipula is updating a
Blaise database in the default access mode.

• An exclusive read process has exclusive access to the database for reading
only. Such a process is active when Manipula is processing an input Blaise
database in the default access mode or when an external file for the Data
Entry Program (DEP) has a read-only flag.

• A share write process has shared access to the database for writing and
reading. Such a process is active during a data entry session.

• A share read process has shared access to the database for reading only. Such
a process would be active on a database that is used as an external file in the
DEP.

Only one application can get exclusive write access, and when this occurs, other
applications cannot get access. Multiple applications can get exclusive read
access (such as DEP external files that are read-only), but only if no other access
rights have already been granted. Exclusive write/read access is fast, because no
opening and closing is required for each access.

Chapter 2: Blaise Control Centre

40 Blaise 4.5

Monitor automatically checks the status and refreshes the window every 10
seconds by default. You can change this by clicking the Options button. You can
refresh Monitor yourself by clicking the Refresh button.

2.2.12 Hospital utility
The Hospital utility checks the integrity of Blaise data files. It can also rebuild
corrupted files.

To run Hospital, select Database Hospital from the menu, or run the program
hospital.exe, which is in the Blaise system folder. Open a Blaise data file and
the Hospital form appears.

Figure 2-32: Hospital form

This box shows the name of the data file, the metadata file name, the number of
forms, and the creation date and time.

To diagnose the file, click the Diagnosis button. Hospital checks the file. If the
file is healthy, the following diagnosis completion message appears.

 Chapter 2: Blaise Control Centre

Developer's Guide 41

Figure 2-33: Diagnose completion message

This box summarises information about the data file. Note the Diagnose outcome
at the bottom of the box.

If the data file is not healthy, the system displays a message. Many things could
cause a data file to be unhealthy. The sample below shows the message that
appears if a primary key file is missing.

Figure 2-34: Diagnose completion message

Click the OK button and the Hospital dialog box appears.

To rebuild the data file, click the Recover button on the Hospital dialog box. The
system attempts to rebuild the data file. When it has been successfully completed,
the following message appears:

Chapter 2: Blaise Control Centre

42 Blaise 4.5

Figure 2-35: Successful recovery in Hospital

If you want to replace the old data file with the recovered data file, click the
Replace button. Hospital creates a new data file with the same name, and a
backup of the old data file, with a .!bd extension.

2.2.13 Command line prepare utility
Blaise provides a command line prepare utility that can be used for batch prepare
of a data model or Manipula/Maniplus setup. This program is a console
application, and therefore, it does not show a window on the screen.

Run this utility by invoking B4CPars.exe, which can be found in the Blaise
system folder. Command line options for this utility are listed in Appendix A.

2.2.14 A remark on OleDB
It is now possible to access relational databases from within Blaise by using the
Blaise OleDB interface. This functionality is only available when the Blaise
Component Pack has been installed.

To access a relational database from within Blaise, create a Blaise OleDB
interface file (a BOI file). You can do this by activating the Blaise OleDB wizard
in the Blaise Control Centre. If the Wizard is not present there, it has not been
installed on your computer.

An important task of the wizard is to map the fields present in a table or view in
your relational database to fields defined in a Blaise data model. The wizard
supports two ways to map the fields. The first way is by generating a Blaise data
model based on the meta information that can be extracted from the table or view.
In this case each field (column) present in the table/view will be mapped to a field
in the generated data model. The second way is to provide an already existing

 Chapter 2: Blaise Control Centre

Developer's Guide 43

data model and to map the fields (some or all) of the table/view to fields in that
data model. The result of the Wizard is always a BOI file that contains the
mapping between columns in the table/view and fields in a data model.

2.3 Structure Browser

When you create and prepare data models, it is often useful to review their overall
structure and associated information. There are two methods of doing this, each
with its own advantages. The first is to use Cameleon, Blaise's metadata utility. It
can produce diagrams of the block structure of the data model, as well as other
descriptive information, which can be saved to a file and then viewed or printed.

A more dynamic way to review the structure is through the Structure Browser.
The Structure Browser provides an overview of the data model. You can see the
relationship of fields, blocks, nested blocks, and other Blaise items. You can
focus on part of a data model and explore hierarchies, and you can control the
type of information displayed. The Structure Browser is an excellent tool for
understanding data models, especially ones with which you are unfamiliar.

2.3.1 Viewing the structure
The Browser views prepared instrument files, not the Blaise source code file.
Therefore, you have to prepare the data model before you can view its structure.
It is the preparation that creates the metadata file you will be viewing.

After preparing, select Database Browse Structure from the menu, or click the
Browse Structure speed button on the Speedbar. Select a metadata file with a
.bmi extension.

The Structure Browser opens in the Control Centre. The following sample shows
the Structure Browser with the file commut14.bmi, which is the prepared file for
the commut14.bla data model:

Chapter 2: Blaise Control Centre

44 Blaise 4.5

Figure 2-36: Structure Browser

The browser shows a hierarchical tree of the data model, with the data model
name at the top of the tree. The fields appear in the order in which they are
specified in the data model, not necessarily in the order that they appear when the
instrument is run.

Blaise displays an icon or a letter next to the items in the tree. Figure 2-37 lists
the icons and letters and their descriptions.

 Chapter 2: Blaise Control Centre

Developer's Guide 45

Figure 2-37: Icons and letters in the Structure Browser

Expand and collapse branches of the data model tree by clicking the plus sign or
minus sign that is next to an array, block, or the data model name. You can also
use the left and right arrow keys.

Detail panel
To see more details of the model, right-click on the Structure Browser window
and select the Details option from the pop-up menu, or select Database Show
Details from the menu. The Data model details panel appears on the right side of
the window.

Chapter 2: Blaise Control Centre

46 Blaise 4.5

Figure 2-38: Structure Browser with detail panel

The detail panel shows additional information about the data model. If you click
on the uppermost node of the tree on the data model name itself, the detail panel
gives you the option to view Descriptives, Specifications, Languages, Keys,
Parallel blocks, and Rules for the model. These are listed on the left part of the
detail panel. You can go directly to the section you are interested in by clicking
on it. Blaise will move that section of information to the top.

You can resize the panels by placing the mouse pointer on the separator bar that
is between the tree and the detail panel and dragging it to another position. You
can also use the horizontal and vertical scroll bars to view the tree and the detail
panel.

Field, array, and block details
As you click on different parts of the data model tree, the detail panel on the right
changes to display specific details about blocks, arrays, or fields. When you click
on a field on the tree, the detail panel gives you the option to look at Descriptives,
Specifications, Text, and Description text. If you click on an enumerated field on
the tree, Blaise displays the enumeration details on the panel. If you click on an
array or block on the tree, you can view the Rules for the block or array, as shown
in Figure 2-39.

 Chapter 2: Blaise Control Centre

Developer's Guide 47

Figure 2-39: Structure Browser with Rules section

You can cut and paste text that appears in the Rules and Text sections of the detail
panel.

Find feature
You can use Blaise's Find function to search for specific items in the Structure
Browser, on either the tree or the detail panel. Right-click on the area of the
window you want to search in, and select the Find option from the pop-up menu.

Run from the Structure Browser
You can also run a data model from the Structure Browser. Open the metadata
file, and then select Run Run from the menu or click on the run icon in the
toolbar.

2.3.2 Structure Browser options
You can set display options for the Structure Browser. Right-click on the Browser
window and select Options from the pop-up menu. The Structure Viewer options
appear in the Environment Options dialog box. These can also be set by selecting
Tools Options from the menu.

Chapter 2: Blaise Control Centre

48 Blaise 4.5

Click the appropriate boxes to display the type of fields listed in the Fields to
show section. To display internal parameters, click the appropriate boxes under
the Internals to show. Internal parameters are discussed in the section on data
model performance in Chapter 5.

2.3.3 Viewing data model statements
In addition to displaying the various components of the data model, the structure
browser also can show in a tree display the statements that control the routing of
the data model. To see this display, right-click in the left panel and from the pop-
up menu select Statements, or from the Control Centre menu select Database
Statements View.

Figure 2-40: Pop-up menu to display statements

Now the left-side panel is transformed into a display of the data model
statements, showing information for each block, question, computation,
conditional, edit check, and other objects used in the Rules.

Blaise displays an icon next to the items in the tree. The following table lists the
icons and their descriptions.

 Chapter 2: Blaise Control Centre

Developer's Guide 49

Figure 2-41: Blaise icons with descriptions

The statement display provides a flexible, view of precisely what is happening in
the data model. In developing or analysing a complex Blaise data model with
many if-then conditions and routes, iterative loops, edit checks, external files and
other elements, the statements view is a powerful tool. Figure 2-42 provides a
sample statement display.

Figure 2-42: Structure browser with statement display

Chapter 2: Blaise Control Centre

50 Blaise 4.5

The right-side panel has detailed information about the selected statement or
object. For example, in the following figure, a signal-type edit check is selected.
Along with the conditional expression shown on the left, the right, or details,
panel provides in three tabs full information on the statement details, the active
conditions and the fields involved.

Figure 2-43: Browse statement Fields Involved

2.4 Database Browser

A Blaise data file is not a text file but a binary file. You cannot view it in a
different file browser or in a text editor, and you might even corrupt the file if you
attempt to do so. Blaise therefore provides a Database Browser that allows you to
look at the contents of a Blaise data file. You can browse the data and view
details of it, search on key fields, and select and save a specific view of the data.

 Chapter 2: Blaise Control Centre

Developer's Guide 51

2.4.1 Viewing the data
To view the data, select View Browse Contents from the menu, or click the
View speed button on the Speedbar. The Open dialog box appears. Select a Blaise
data file with a .bdb extension and the Database Browser window appears.

The sample below shows the data file commut14.bbd that was created by
running the data model commut14.bla, and then entering sample data.

Figure 2-44: Database browser

Detail panel
To see more details, right-click on the window and select the Details option from
the pop-up menu, or select Database Show Details from the menu. A detail
panel appears on the right, as shown in Figure 2-45.

Chapter 2: Blaise Control Centre

52 Blaise 4.5

Figure 2-45: Database browser with detail panel

The detail panel displays the answer text for the fields in your data file. If a field
contains a remark, that is also displayed on the detail panel with a separate
Remarks tab. You can also cut and paste text from the detail panel.

Resize and reposition columns
As with the Structure Browser, you can resize the panels by placing the mouse
pointer on the separator bar and dragging it to another position.

Resize a column by placing the mouse pointer on the separator between columns
and dragging it. You can set specific column widths by setting Database Browser
options; these are discussed in the following section. Reposition a column by
clicking on it and dragging it to a new location.

Edit column titles
You can change the column titles by right-clicking on the column title to be
changed. The Change Header dialog box appears. Enter a new title and click the
OK button, and the new title appears for that column.

Search on key fields
If you have identified key fields in the data model, a Search box and a Key type
box appear at the bottom of the Database Browser window.

 Chapter 2: Blaise Control Centre

Developer's Guide 53

Figure 2-46: Key type box

• To search for specific responses using the keys, click the arrow in the Key
type box to select a key type, then type the text to search in the Search box.

• You can search for the values in the format in which they are stored in the
Blaise database or in the format in which the fields are defined. For example,
for enumerated or set fields, you can search for the database value (such as 1,
2, and so on) or for the value label of the response (such as yes or no).

• To search using the formats of the field definitions, you must check the
Smarter search option in the Environment Options dialog box, Database
Browser tab. (See the following section, 2.4.2 Database Browser options.)

• For keys that contain an enumerated field or a set field, if Smarter search is
not checked, enter the database value of the field (such as 1, 2). If Smarter
search is checked, enter the label of the response, such as Yes or No.

• For keys that contain a numeric field, if Smarter search is not checked, enter
the value followed by a semicolon (;). If Smarter search is checked, just
enter the actual value.

• For keys that contain a string field, search for the actual value of the field.

• For keys made of multiple fields, separate the values to search on with a
semicolon. This applies whether or not Smarter search is checked.

• For example, suppose you have a secondary key that is made of the fields Job
and Sports, and both fields are enumerated with Yes and No responses. To
search for the database value of a form that has Job = Yes and Sports = No,
you would enter 1;2 in the Search box. To search for the value label, you
would first make sure the Smarter search option is checked, and then you
would enter Yes,No in the Search box.

• In another example, suppose you have a date field, and your Windows® date
settings are in the format mmddyyyy. Date fields are stored in the Blaise
database in the format yyyymmdd. If you want to search for the date
12011998 and Smarter search is checked, and you would enter 12011998 in
the Search box. Otherwise, you would enter 19981201.

Keys are discussed in more detail in Chapters 3 and 5.

Chapter 2: Blaise Control Centre

54 Blaise 4.5

Record filter
If secondary keys have been identified in your data model, you can filter the data
based on the secondary keys. Select Database Record Filter from the menu, or
right-click on the window and select the Record Filter option. The Record Filter
Settings dialog box appears.

Figure 2-47: Record Filter Settings dialog box

To enable the filter, click the Filter enabled box. Select a field from the Filter on
field box and type a value for the field in the Filter value box. Click the OK
button.

The browser displays only those records that match the value input for that key.

Select fields to view
You can select specific fields to view in the Database Browser. Select Database

 Select Fields from the menu, or right-click on the Database Browser window
to display a pop-up menu. The Select Fields dialog box appears.

 Chapter 2: Blaise Control Centre

Developer's Guide 55

Figure 2-48: Select fields dialog box

The structure of the data model is on the left and the selected fields are on the
right. Expand and collapse the tree by clicking the plus signs or minus signs or
using the left and right arrow keys. Double-click in the box next to each block,
array, or field that you want displayed, or use the space bar to toggle the check on
and off.

For blocks, the box next to the block field can appear three different ways. If the
box is empty, no fields within the block are selected. If the box is grey with a
check mark, some fields in the block are selected. If the box is white with a check
mark, all fields in the block are selected.

When you are finished, click the OK button.

The Database Browser window reappears and shows only those fields that you
selected.

Save a view
You can save a specific view of your data file. This is useful if you want to show
only specific parts of a data file to others, or if you are debugging an instrument
and want to repeatedly view only parts of the data file.

First, select the fields you want in the view by clicking on them. Then select File
 Save As from the menu. A Save Field Selection As dialog box appears. Save

the view settings in a file; the default file extension is .bdv. You can then open
this file in the Database Browser.

Chapter 2: Blaise Control Centre

56 Blaise 4.5

Running the DEP from the database browser
You can also run a data model from the Database browser. Highlight in the
database browser the record you wish to open and click on the run icon in the
toolbar or select Run Run from the menu. The DEP will be run on this record.

2.4.2 Database Browser options
You can set display options for the Database Browser. Right-click on the window
and select Options from the pop-up menu. The Data Viewer options appear in the
Environment Options dialog box. These can also be set by selecting Tools
Options from the menu.

• Code names. Select to display the name instead of the code for enumerated
fields.

• Field type. Select to display the field type, such as string or enumerated, on
the status bar.

• Key fields. Select to display the key fields in the first columns of the Browser.
By default this option is checked. Key fields will only be displayed when this
option is selected.

• Smarter search. Select this option to take into account the field definitions of
the key when searching. If this option is not checked and you search on key
fields in the Database Browser, you have to search on the database value of
the field in the format that it is stored in the database. For example, date
fields are stored in the Blaise database in the format 19981201. If you select
this option, you can search for the date in the format that corresponds to your
Windows® date settings (for example, as 12011998). This option applies to
all field types. (See section 2.4.1 Viewing the data, Search on keys for more
examples.)

• Internal record number. Select to display a sequential record number.

• Correctness status. Select to display whether the records are clean, dirty,
suspect, or not checked.

• Number of errors. Select to display the number of errors in each record.

 Chapter 2: Blaise Control Centre

Developer's Guide 57

• In the Column width section, click Default to set the column width equal to
the field name size. Click Data width to set the column width equal to the
length of the data only. To set a specific column width, type a number in the
Maximum column width box. This is most useful for string, memo, and
classification fields. To set a specific number of fields to display, type a
number in the Maximum fields to display box.

• The Font and Size boxes change the display font used.

2.5 Help

Blaise provides extensive on-line help. When you select Help from the menu, you
have two options. Help topics contains on-line help on the Blaise system.
Reference manual contains specific Blaise language information. You can also
access context-sensitive help by pressing F1.

2.5.1 What’s New
In this help topic all information present in the readme files of all releases since
the first Blaise version 4.0 release can be accessed. This provides easy access to
the many features and capabilities of Blaise. In addition the What’s new topic
discusses other important topics, including:

• Information for Blaise III users

• Environment settings

• Manipula Configuration File

• Translating Blaise to a different language

• Blaise Help Files

• Oem to Ansi (upgrading from version 4.2 or earlier to version 4.3 or higher)

• Blaise Command Line Option File

2.5.2 Enter registration
Help|Enter registration opens a dialog box into which you can enter the license
information for your Blaise development system. Typically this is only used
when a licensed is renewed or updated to enable an extra capability.

Chapter 2: Blaise Control Centre

58 Blaise 4.5

Enter the license number and license key provided. The Mask license key check
box, when enabled, displays ‘*’ characters as you type in the license key value.

The current expiration date of the license is shown in the lower left corner.

Figure 2-49: Enter registration dialog box

Developer's Guide 59

3 Data Model Basics

A data model in the Blaise® language states the definition and structure of the
survey data and their interrelationships. In order to set up a system for collecting
the proper data, you must specify the data model in explicit and unambiguous
terms. The data model can hold all information that is needed throughout the
complete survey process, including routing and consistency relationships between
variables. The data model also serves as a knowledge base for all other parts of
the system.

The data model specification in the Blaise® language is checked and prepared for
production use in the Control Centre. To enter data based on your data model,
there is a Data Entry Program, or DEP, that can be used for interviewing, data
editing, and data entry. The program is also referred to as an instrument.

This chapter gives an overview of the Blaise language and covers basic Blaise
language elements and concepts. With these you can build many useful data
models. Blocks and tables, which you can use to build very large and complex
data models, are covered thoroughly in Chapter 4. Advanced and specialised
topics are covered in Chapter 5.

3.1 Blaise Language Overview

You specify a Blaise data model through the Blaise language. This section
provides an overview and a few data model samples. The three data models in
this section only give a taste of the language. Much larger and more complex data
models are possible. You can prepare the code from these three data models with
the files commute1.bla, commute2.bla, and commute3.bla. They are found
in \Doc\Chapter3 in the Blaise system folder.

Field definition
A field definition includes a field name and a field type that defines valid values.
Usually it will have question text. It can have a description to document the field,
a field tag, and special attributes.

Chapter 3: Data Model Basics

60 Blaise 4.5

Rules
There are four types of rules: routing instructions, edit checks (hard and soft),
computations, and layout instructions.

• Routing instructions describe the data entry order of the fields and the
conditions under which they will be eligible. For computer-assisted
interviewing, the route specifies the order and conditions in which the fields
are asked.

• Edit checks determine whether a specified statement is true for the values of
the fields involved. If it is false, the instruction will generate an error. What
will be done with the error depends on the application at hand. Two kinds of
edits are supported. The CHECK instruction defines a hard error, something
that must be fixed before the form can be considered clean. The SIGNAL
instruction defines a soft error, which is a possible problem. It can be
suppressed or the values of the involved fields may be changed. A CHECK is
the default.

• Computations determine proper routes to process fields, carry out complex
checks, or derive values.

• Layout instructions determine the placement of data entry fields displayed in
the Data Entry Program.

We will illustrate various aspects of the Blaise language by using a simple
example: a survey that investigates the behaviour of commuters. We start with a
simple data model. The program code for this data model can be found in
commute1.bla in \Doc\Chapter3 of the Blaise system folder.

The population consists of people, and for each person we want to have values for
six fields: their name, the town where they live, gender, marital status, number of
children (for women only), and age. The following example contains a possible
specification of this data model:

 Chapter 3: Data Model Basics

Developer's Guide 61

DATAMODEL Commute1 "The National Commuter Survey, first example."

 FIELDS
 Name "What is your name?" : STRING[20]
 Town "In which town do you live?" : STRING[20]
 Gender "Are you male or female?" : (Male, Female)
 MarStat "What is your marital status?" :
 (NevMarr "Never married",
 Married "Married",
 Divorced "Divorced",
 Widowed "Widowed")
 Children "How many children have you given birth to?" : 0..10
 Age "What is your age?" : 0..120

 RULES
 Name
 Town
 Gender
 MarStat
 Age
 CHECK
 IF (Age < 15) "If age is less than 15" THEN
 MarStat = NevMarr
 "then he/she is too young to be married !"
 ENDIF
 IF (Gender = Female) AND (Age >= 12) THEN
 Children
 ENDIF

ENDMODEL

Reserved words or key words
Certain words such as DATAMODEL, FIELDS, and ENDIF have special meaning in
the Blaise language and are called reserved words or key words. These words are
printed in uppercase in this guide. Their use is reserved for special situations. To
emphasise this special meaning in the code examples, they are printed in capitals.
In your own programs, reserved words may be typed in lowercase, or in a mixture
of lowercase and uppercase letters. It is a good programming practice to type
reserved words in a recognisable way. Most key words are highlighted in the
Control Centre.

The first line of the specification contains the reserved word DATAMODEL
followed by a name and, optionally, a longer explanatory text between double
quotes. The end of the specification is indicated by the reserved word ENDMODEL.

Fields
A field is the basic element of the data set in Blaise. Fields can have specific
types of definitions. Examples of definition types include strings, numbers, or
dates. You can create your own user-defined types of fields.

Chapter 3: Data Model Basics

62 Blaise 4.5

You specify fields in the FIELDS section. In its most simple form, each field
definition consists of an identifying name and a specification of the valid values.
A longer text between double quotes will usually be inserted between the name
and the value definition. This text may serve to state a question, as description, or
to document the field.

Identifier
The above sample data model contains six fields. The first two fields are Name
and Town:

Name "What is your name?" : STRING[20]
Town "In which town do you live?" : STRING[20]

These are string fields. They can hold any text up to 20 characters. The fields
Children and Age are numeric fields:

Children "How many children have you had?" : 0..10
Age "What is your age?" : 0..120

The values for Children have to be within the range from 0 to 10, and the range
for Age is 0 to 120. The fields Gender and MarStat are enumerated (also called
precoded) fields:

Gender "Are you male or female?" : (Male, Female)
MarStat "What is your marital status?" :
 (NevMarr "Never married",
 Married "Married",
 Divorced "Divorced",
 Widowed "Widowed")

There is a list of possible values assigned to each of these two fields. One value
has to be picked from each list. The list for Gender contains the two items Male
and Female. The list for MarStat consists of four items. Each item has an
identifying name and an explanatory text.

The second part of the data model specifies the rules that have to be obeyed in
processing the data. This section starts with the reserved word RULES. Rules come
in three forms: routing instructions, edits, and computations.

Routing
Let us start with the routing instructions. Writing down the name of a field in the
RULES section means obtaining a value. For an interviewing program this implies

 Chapter 3: Data Model Basics

Developer's Guide 63

asking the question. The RULES section of the example starts with the five field
names Name, Town, Gender, MarStat, and Age.

RULES
 Name
 Town
 Gender
 MarStat
 Age

These five fields will be processed in this order. Field names can also be asked,
subject to a condition. For example:

IF (Gender = Female) AND (Age > 12) THEN
 Children
ENDIF

This means that the field Children will only be processed if the field Gender has
the value Female and Age is greater than 12.

Checking

Checks are conditions that have to be satisfied. You can state the check in terms
of what the correct relationship between fields should be.

MarStat = NevMarr "he/she is too young to be married!"

The specification instructs the system to check whether the field MarStat has the
value NevMarr. If not, then the edit is invoked. You can attach text between
double quotes to a condition. Such a text will be used as an error message if the
condition is not satisfied.

Checks can be subject to conditions:

IF (Age < 15)
 "If age of respondent is less than 15" THEN
 MarStat = NevMarr
 "then he/she is too young to be married!"
ENDIF

The check MarStat = NevMarr will only be carried out if the field Age has a
value less than 15. The application will reject entries in which people younger
than 15 years are married.

Chapter 3: Data Model Basics

64 Blaise 4.5

As an alternative to Checks, the ERROR function can be used in cases where the
result of the condition is always false. ERROR allows you to generate an error
after a complex IF...THEN structure of checks, in a branch which should logically
not be reached. In other cases, its use is not advised.

An error check is not directly related to fields. It is best to use the INVOLVING
instruction to activate edit fields to avoid situations in which you cannot repair the
error.

IF Age<15 INVOLVING (BDate) THEN
 MarStat = NevMarr
ELSEIF MarStat = Married THEN ...
ELSEIF Children = 0 THEN
 ...
ELSE
 ERROR "One or more children expected"
ENDIF

The field, Children, is the only field involved in the error check.

DATAMODEL Commute1 "The National Commuter Survey, first example."

 FIELDS
 Name "What is your name?" : STRING[20]
 Town "In which town do you live?" : STRING[20]
 Gender "Are you male or female?" : (Male, Female)
 MarStat "What is your marital status?" :
 (NevMarr "Never married",
 Married "Married",
 Divorced "Divorced",
 Widowed "Widowed")
 Children "How many children have you given birth to?" : 0..10
 Age "What is your age?" : 0..120

 RULES
 Name
 Town
 Gender
 MarStat
 Age
 CHECK
 IF (Age < 15) "If age is less than 15" THEN
 MarStat = NevMarr
 "then he/she is too young to be married !"
 ENDIF
 IF (Gender = Female) AND (Age >= 12) THEN
 Children
 ENDIF

ENDMODEL

 Chapter 3: Data Model Basics

Developer's Guide 65

The complete commute1.bla data model, shown above, has six fields that deal
with personal characteristics and not with commuter behaviour. We will now
extend the data model with five fields that contain information about commuting.
To keep the fields in the model well organised, we will distribute the fields over
two blocks: one with personal characteristics and one with information about
work and commuting.

The program code for this data model can be found in the file commute2.bla in
\Doc\Chapter3 under the Blaise system folder.

Chapter 3: Data Model Basics

66 Blaise 4.5

DATAMODEL Commute2 "The National Commuter Survey, example 2."

BLOCK BPerson "Demographic data of respondent"

 FIELDS
 Name "What is your name?" : STRING[20]
 Town "In which town do you live?" : STRING[20]
 Gender "Are you male or female?" : (Male, Female)
 MarStat "What is your marital status?" :
 (NevMarr "Never married",
 Married "Married",
 Divorced "Divorced",
 Widowed "Widowed")
 Children "How many children have you given birth to?" : 0..10
 Age "What is your age?" : 0..120

 RULES
 Name Town Gender MarStat
 Age
 IF (Age < 15)
 "If age of respondent is less than 15" THEN
 MarStat = NevMarr
 "then he/she is too young to be married !"
 ENDIF
 IF (Gender = Female) AND (Age > 12) THEN
 Children
 ENDIF
ENDBLOCK

BLOCK BWork "Data about work and commuting"

 FIELDS
 Working "Do you have a paid job?" : (Yes, No)
 Descrip "Short description of your job" : STRING[40]
 Distance "What is the distance to your work (in km)?" : 0..300
 Travel "How do you travel to your work?" : SET [3] OF
 (NoTravel "Do not travel, work at home",
 PubTrans "Public bus, tram or metro",
 Train "Train",
 Car "Car or motor cycle",
 Bicycle "Bicycle",
 Walk "Walk",
 Other "Other means of transportation")
 Commuter "Are you a commuter?" : (Yes, No)

 RULES
 Working
 IF Working = Yes THEN
 Descrip Distance Travel
 ENDIF
 IF (Working = Yes) and (Distance > 10) THEN
 Commuter := Yes
 ELSE
 Commuter := No
 ENDIF
ENDBLOCK

FIELDS
 Person : BPerson
 Work : BWork;

RULES
 Person
 Work

ENDMODEL

 Chapter 3: Data Model Basics

Developer's Guide 67

The specification contains two block definitions: the block BPerson and the block
BWork. A block is like a sub-data model with fields and rules. A block is a
special kind of field type. You define a field with the block name as field type.

FIELDS
 Person: BPerson

This is a field of the type Bperson, which is a block of fields and rules. Writing
down the name of such a field in a RULES section means processing all fields and
rules inside the block. The reason that a block is renamed in a FIELDS section as
shown above will become clear in Chapter 4. You will find it is a powerful way to
repeat blocks of code with just a few words.

The preceding example also contains a compute instruction. Take a look at the
field Commuter. It is defined in the FIELDS section of the block BWork.

The field name appears in the following part of the RULES section:

IF (Working = Yes) and (Distance > 10) THEN
 Commuter := Yes
ELSE
 Commuter := No
ENDIF

The field Commuter gets the value Yes if a person's activity is Working and the
distance to work is more than 10 km. In all other cases, the field Commuter will
get the value No. Note that the interview program based on this model will never
ask the question Commuter. Instead its answer will always be computed. In fact,
it is not even displayed on the screen.

The following example contains a small hierarchical data model. The data model
has two levels. The highest level is the household with only three fields: the
address of the household (street and town) and the size of the household. In each
household there are persons. Each person has a set of demographic fields and a
set of fields relating to work and commuting. The following program code can be
found in commute3.bla in \Doc\Chapter3 in the Blaise system folder:

Chapter 3: Data Model Basics

68 Blaise 4.5

DATAMODEL Commute3 "The National Commuter Survey, example 3."

TYPE
 TYesNo = (Yes, No)
BLOCK BPerson "Demographic data of respondent"
 FIELDS
 Name "What is your name?" : STRING[20]
 Gender "Are you male or female?" : (Male, Female)
 Age "What is your age?" : 0..120
 MarStat "Are you married?" : TYesNo;
 RULES
 Name Gender Age
 IF Age >= 12 THEN
 MarStat
 ENDIF
 IF (Age < 15)
 "If age of respondent is less than 15"
 THEN MarStat = No
 "then he/she is too young to be married !"
 ENDIF
ENDBLOCK
BLOCK BWork "Data about work"
 FIELDS
 Working "Do you have a paid job?" : TYesNo
 Descrip
 "Give a short description of your job" : STRING[40]
 Distance
 "What is the distance (in km) from home to work?" : 0..300
 Travel "How do you travel to your work?" :SET[3] OF
 (NoTravel "Do not travel, work at home",
 PubTrans "Public bus, tram or metro",
 Train "Train",
 Car "Car or motor cycle",
 Bicycle "Bicycle",
 Walk "Walk",
 Other "Other means of transportation")
 Commuter "Are you a commuter?" : TYesNo
 RULES
 Working
 IF Working = Yes THEN
 Descrip Distance Travel
 ENDIF
 IF (Working = Yes) and (Distance > 10) THEN
 Commuter := Yes
 ELSE
 Commuter := No
 ENDIF
ENDBLOCK
LOCALS
 I: INTEGER
FIELDS
 Street "Address of the household, @/Street and number?" : STRING[20]
 Town "Address of the household, @/Town?" : STRING[20]
 HHSize "Number of persons in the household?" : 1..10
 Person: ARRAY[1..10] OF BPerson
 Work: ARRAY[1..10] of BWork;
RULES
 Street Town HHSize
 FOR I := 1 TO HHSize DO
 Person[I]
 Work[I]
 ENDDO
ENDMODEL

 Chapter 3: Data Model Basics

Developer's Guide 69

The example shows a number of new elements you can use in Blaise. It has a
section for declaring local variables. This section starts with the reserved word
LOCALS. You use locals in computations as intermediate variables, or as an index
for running through an array of fields. Local variables are of a temporary nature.
Their values are not stored.

There is a section that starts with the reserved word TYPE. You can define your
own field types in this section. This is particularly useful if you have several
fields to which you want to assign the same set of valid values. The hierarchical
data model above contains a definition of the field type TYesNo that is used in a
field definition for the fields Married, Working, and Commuter.

There are two block definitions in the model: BPerson and BWork. The FIELDS
section at the highest level (the household level) contains the following line:

Person: ARRAY[1..10] OF BPerson

This statement defines a series of 10 fields Person[1], Person[2], ..., Person[10]
of the block type BPerson. All 10 fields represent a set of fields: the fields in the
block BPerson (Name, Gender, MarStat, and Age). Likewise, there is a series of
block fields Work[1] to Work[10].

The data model shown above is a simple example of a hierarchical data model.
There is a series of fields at the household level, and there are fields at the person
level. The fields at the person level can be repeated at most 10 times, once for
each member in the household.

Programmer's comments
Some organisations consider it a good programming practice to make frequent
comments in the Blaise code so that you or your successor can easily see what
logic you are implementing. This is done with the braces '{' and '}'. There is no
practical limit on the length of comments. You can nest comments. During
preparation, if Blaise sees a left brace '{', then everything after that brace will be
considered a comment until it sees a right brace '}'.

3.2 Fields

Fields represent the variables to be measured in the survey. The definition should
be such that the fields can hold all correct values of the variables that may be
encountered in practice. The definition should be strict enough to enable the

Chapter 3: Data Model Basics

70 Blaise 4.5

system to detect incorrect values, but not values that are merely unlikely. You
check unlikely values with a signal, or soft edit, as described in the text that
follows.

Fields section
You define fields in a special section of the data model. This section must start
with the reserved word FIELDS. All field definitions follow the same scheme. In
its simplest form, the field definition is:

FIELDS
 Fieldname: FieldType

Field names
The field name is specified first. You can use characters from different alphabets,
like the 'å' and the 'ö.' Field names can be up to 255 characters, but we suggest
you avoid using very long names. Some examples of proper field names are:

Head_of_the_household

Year_1

_12_Months

ålder

ÃÄÄ

Année_de_naissance

The field name is used in several ways:

• It is used in the RULES section to refer to the field in routing instructions, in IF
conditions, computations, and edit checks.

• It is may be used to identify the question in the FormPane on the screen.

• It may be used to list fields to jump to for the interviewer or editor when an
edit is invoked.

• It may be used in Cameleon set-ups or the Blaise API to provide
documentation or to create data set-up programs for packages like SAS and
SPSS.

• It is used in Manipula set-ups.

 Chapter 3: Data Model Basics

Developer's Guide 71

Note that the field description can be used in the form pane. The use of the field
name, with respect to the field description is discussed in the text to follow.

The choice of a good field name is extremely important, especially for the
interviewer. Because field names will be displayed to the interviewer if she
encounters an edit (meaning that something in the field was input
inappropriately), the field name needs to be clear and sensible. For example, the
field name FirstName is much clearer than Name1 or Q1.

Field types
The second element of the field definition is the field type. The field type tells the
system which values to accept. Blaise has several pre-defined field types. They
are discussed further in the following sections. A few examples follow:

Name : STRING[30]

Age : 0..120

Field text
You can include text between double quotes for questions, instructions, or other
text displays:

 FieldName "Text" : FieldType

This text is used by the interviewer to ask questions. The maximum length of the
text is 32,767 characters. An example:

Name "What is your name?" : STRING[30]

Age "How old are you?" : 0..120

The metadata program Cameleon can use the text as a field description when it
creates set-ups for other packages like SPSS, Oracle, and SAS. It can also use the
field description, which is described next.

Field description
The survey process will often consist of several activities. Therefore, you may
need different texts for different purposes: a question text for collecting the data,
an explanatory text for tabulating data, and variable labels for analysing the data
with a statistical package. For this purpose you can attach two texts to a field. The

Chapter 3: Data Model Basics

72 Blaise 4.5

second text is called a description. The two texts are separated by a slash (/). The
field definition scheme can now be extended to the following form:

FieldName "Text" / "Description" : FieldType

The FieldDescription may be displayed in the Blaise page as an alternative to the
FieldName. It can also be displayed in the Edit Jump dialog. See section 3.6.4.
FieldDescription can be used as the interviewer identifier and additionally, as a
label in a downstream system for all spoken languages.

When the interviewer switches languages, many things on the screen, including
field texts, switch to the active language as well. If there is an edit, then the fields
are identified by the readable FieldDescription in the appropriate spoken
language. For example:

Name "What is your name?" / "Respondent name" : STRING[30]

Age "How old are you?" / "Respondent age" : 0..120

Languages
Blaise supports the use of different languages. This is particularly important if
you want to interview people speaking different languages. During interviewing,
the interviewer can change to a different language with a function key. This
requires you to specify the question texts in all languages you might intend to use.
The format for a field definition for two languages is as follows:

FieldName "Text1" "Text2" /
 "Description1" "Description2" : FieldType

You specify the question texts (Text1 and Text2) in different languages, and
specify the descriptions after the slash in the same order. Here is a concrete
example:

Name "What is your name?" "Wat is uw naam?" /
 "Name of respondent" "Naam van de respondent" : STRING[30]

Note that you have to specify the languages of your multilingual data model in
the SETTINGS section of the data model. See Section 3.7.2 Languages for a
description of spoken and non-spoken languages.

 Chapter 3: Data Model Basics

Developer's Guide 73

Field tags
Questions on paper questionnaires are often identified using numbers. We do not
advocate this principle. We think that working with and talking about
questionnaires is much easier if you give names to questions. It will be much
clearer if you talk about the questions Age and Work instead of talking about
questions Q001 and Q234. It also makes maintenance much easier, for instance, if
new questions are inserted between numbers Q001 and Q002. Still, when entering
data from paper forms, data entry operators like to have an easy way to associate
the fields on the form with the fields on the screen. Blaise offers field tags for this
purpose.

A field tag can be displayed on the screen and you can jump to fields with a
specific field tag. By default, the search for the tag will be conducted from the
start of the form, though you can specify the search to start from the current point.
The tag search is case-insensitive. A field tag is specified between parentheses
after the field name and before the first text:

FieldName (FieldTag) "Text" / "Description" : FieldType

A field tag may consist of letters and digits, although usually only digits will be
used (to represent question numbers). The following example illustrates the use of
field tags:

Working (101) "Do you have a paid job?" : (Yes, No)

Descrip (102) "What is your job description" : STRING[40]

It is possible to use the same tag more than one time. You can use a simple tag
such as 'a' or 'A' to mark the beginning of a section, in this case, Section A. This
allows the user to jump easily to the start of the section.

List fields
If a series of fields have the same definition, you can list them together in the
FIELDS section. For example:

FIELDS
 A, B, C : (red, yellow, green)

These will all be the same enumerated type, and it is possible to perform
assignments between them.

Chapter 3: Data Model Basics

74 Blaise 4.5

You can list fields together for any type definition, for example:

FIELDS
 A, B, C : STRING[10]

3.2.1 Field types
Blaise provides a large number of field types. They cover most situations you
may encounter in daily practice. You can easily prepare and see Blaise field types
in the data model types.bla in \Doc\Chapter3 of the Blaise system folder.
Types can be defined at the field they are attached to, in a TYPE section, or in a
type library.

String type
A string field accepts any text as value, provided the length of the text does not
exceed the specified maximum length. An example:

Name "What is your name? " : STRING[30]

The reserved word STRING indicates that text is expected. The length for this field
is specified between square brackets (in the example above, it is 30 characters).
The maximum length is 32,768 characters. For compatibility and data space
reasons, STRING, without a length qualification, remains STRING[255].

Depending on Mode Library settings and the length of the string declaration, the
data entry cell for a string can be shorter than the string (in which case the cell
will scroll, if necessary). The data entry cell can be made wider (this may mean
only one column per form pane), or the cell can take more than one space
vertically.

You can test the contents of, or make an assignment to, a string field using single
quote marks:

IF SectionName = 'Household' THEN
 Label1 := 'Household Roster'
ENDIF

 Chapter 3: Data Model Basics

Developer's Guide 75

It is common to test or assign values between string fields:

IF Name1 <> Name2 THEN
 Name1 := Name2
ENDIF

To test for an empty string you can use either the word EMPTY or two single quote
marks with no space between them.

IF Name = EMPTY THEN...

IF Name = '' THEN

A wide variety of functions that operate on strings or give strings as a result are
available. See the Reference Manual for a complete list of string functions. For
very long text responses, see the following section, OPEN type.

You can restrict the characters the user can enter, to valid characters and formats
using an edit mask. With an edit mask, if the user attempts to enter a character
that is not valid, the character is not accepted. See section 6.6 Data Model
Properties.

OPEN type
For long, open-ended text responses of variable length you can use the OPEN type.
OPEN type fields are useful when the interviewer must record verbatim answers
from respondents. For example, the survey may ask for a description of a
particular injury, or for the respondent to recount an incident in the past. Often, a
subject matter specialist will later apply a code to the description.

When the interviewer arrives at an OPEN type field and starts typing, a text entry
window opens. This is where the answer is recorded and later reviewed. To
review open-ended responses, press the Insert key at the field to open the
window. To leave an edit window, press Alt-S (or another shortcut key, as
defined in the configuration file).

Chapter 3: Data Model Basics

76 Blaise 4.5

An example (opentype.bla in \Doc\Chapter3 under the Blaise system
folder):

DATAMODEL OpenType "Describes an open type question."
 FIELDS
 Injury "Have you ever had an injury? " : (yes, no)
 Describe "Please describe the injury." : OPEN, EMPTY
 RULES
 Injury
 IF Injury = yes THEN
 Describe
 ENDIF
ENDMODEL

String fields should be used for short open-ended responses. An advantage of
OPEN fields over string fields is that the response is typed in a separate popup
window and hence is easier to read. A long string question is recorded in a field in
the FormPane and you have to scroll through long responses. OPEN fields should
not be confused with remarks, which may be associated with any field. In a Blaise
data set, OPEN answers are part of the main data file. In ASCII readout, OPEN
answers are put into a separate file with the extension .opn.

The maximum size of one OPEN field response is several hundred lines. In a
RULES section, you only refer to an OPEN field with an ASK, SHOW, or KEEP
instruction. An OPEN type field can be used in an assignment or an expression.
You can refer to the text of the OPEN type field as a variable text fill in the text of
another field with the ^ symbol.

You can manipulate the value of an OPEN field using Manipula.

Integer type
Integer fields can be defined in several ways:

Age1 "What is your age?" "Age of respondent" : 0..120

Age2 "What is your age?" "Age of respondent" : INTEGER[3]

Age3 "What is your age?" "Age of respondent" : INTEGER
{Use this definition only for a LOCAL}

The type of the first field, Age1, is a strict range. It contains a lower and upper
bound. All specified values must be within these bounds. Age1 must at least be
zero and at most 120.

 Chapter 3: Data Model Basics

Developer's Guide 77

The field Age2 in the second line is a more general INTEGER type. The value
range is limited by the size of the field (3 characters). Values must be within the
specified number of characters (digits and sign). Hence, the values of Age2 must
be in the range from -99 to 999.

The field Age3 will usually accept any integer up to 18 positions. The general
advice is to use strict ranges. This is equivalent to a powerful univariate edit.
Users will not be able to exceed defined bounds. This is desirable, but make sure
the bounds are correctly chosen. For example, if you define Age from 1 to 120,
you will not be able to record the age of a newborn.

See the section on Answer attributes for a discussion of the ASCII representation
of the values REFUSAL and DONTKNOW for certain integers.

Decimal or real type
To define a field that accepts decimal numbers, you can use the following type
declarations:

Ticket1 "How much did you pay for your train ticket?" : 0.00..10.00

Ticket2 "How much did you pay for your train ticket?" : REAL[5, 2]

Ticket3 "How much did you pay for your train ticket?" : REAL[5]

The first declaration, Ticket1, is the strictest. Values must be between the lower
and upper bound and will be displayed on the screen with the number of decimals
that is used in the range specification. If you enter a number with more decimals,
the value will be rounded to the specified number of decimals. This also applies
to results of computations. If the number of decimals of the lower bound of the
definition is not equal to that of the upper bound, the maximum of the two is
used.

The second format, Ticket2, defines a total field width and a fixed number of
decimals. For example, Ticket2 will accept values in the range from -9.99 to
99.99.

The third format, Ticket3, only defines the field width. All digits, including a
possible minus sign and a decimal point, must fit into the field. For example, the
field Ticket3 will accept real values in the range from -9999 to 99999.

Testing and assignment of numeric fields is straightforward:

Chapter 3: Data Model Basics

78 Blaise 4.5

IF Age < 15 THEN

Age := 10

Average := Total/Number

Many functions take numeric fields as arguments or give numeric fields as
results. Some of these are specifically for integers or real numbers. See the
Reference Manual for a full list of numeric functions.

Enumerated type or precode
An enumerated field can take as a value one of the items in a list of items. The
item is known as a category identifier. A simple example is:

Gender "What is your gender?" : (Male, Female)

The list of possible values consists of a number of names separated by commas
and enclosed in parentheses. In this example, the list has two category identifiers:
Male and Female.

Each category identifier must follow the conventions for identifiers. You may
attach a code number and a text to each category identifier in the list. A code
number must be enclosed in parentheses and the text must be enclosed in double
quotes. An example:

Activity "What is your main activity?" :
 (School (1) "Going to school",
 Working (2) "Working",
 HousKeep (5) "Housekeeping",
 Other (7) "Something else")

If specified, the category texts will be displayed to the user in the info pane; if
not, the category names will appear instead. By default the chosen type name will
be displayed in the FormPane of the Data Entry Program.

To evaluate or make an assignment with an enumerated field, use the category
identifier directly. To determine if a subset of names is in the enumerated field,
use the IN notation. Careful consideration of category identifiers means highly
readable programming code for the developer:

 Chapter 3: Data Model Basics

Developer's Guide 79

IF Activity = School THEN
 Activity := Housekeep
ENDIF

IF Activity IN [School, Working] THEN...

The ORDINAL (ORD) function is the only function that takes an enumerated field as
an argument. It returns the number of the response in the enumerated field.
Following is an example involving two differently defined but related enumerated
fields that are used to collect time unit information.

FIELDS
 AmountOfTime "How much time did you usually spend on the phone at
 work?" : 0..120
 TimeUnit1 "First time unit" : (minutes, hours)
 TimeUnit2 "Second time unit": (hours, day)

In the RULES section, the ORD function could be used:

RULES
 AmountOfTime
 TimeUnit1
 TimeUnit2
 CHECK
 ORD(TimeUnit1) < ORD(TimeUnit2)

The RULES section is covered in the text to follow.

See the section on Answer attributes for a discussion of the ASCII representation
of the values REFUSAL and DONTKNOW for enumerated fields with eight or nine
options.

Type compatibility for enumerated fields
To assign values between enumerated fields, they must have the same type.

Chapter 3: Data Model Basics

80 Blaise 4.5

Consider the following two situations:

{Situation 1}
FIELDS
 A : (Red, Yellow, Green)
 B : (Red, Yellow, Green)
RULES
 A := B

{Situation 2}
TYPE
 TrafficLight = (Red, Yellow, Green)
FIELDS
 A : TrafficLight
 B : TrafficLight
RULES
 A := B

In Situation 1 above, the computation will not pass the syntax check because
Blaise will not recognise fields A and B as having the same type. In Situation 2, it
will.

Set type
To allow a respondent to choose more than one item from a list of answers, use a
SET field. A SET field may also be known as a multiple precode or code-all-that-
apply. Consider the following example:

Travel "How do you travel to your work?" : SET [3] OF
 (NoTravel "Do not travel, work at home",
 PubTrans "Public bus, tram or metro",
 Train "Train",
 Car "Car or motor cycle",
 Bicycle "Bicycle",
 Walk "Walk",
 Other "Other means of transport")

The format is the same as that of an enumerated field with the addition of the
reserved words SET [3] OF. This indicates that, at most, three different category
values can be selected. By specifying SET OF without a number between brackets,
you allow all items to be picked from the list.

 Chapter 3: Data Model Basics

Developer's Guide 81

If you need to refer to a specific element of a SET field, then use the [] notation.
For example:

IF Travel[1] = Walk THEN...

IF Travel[i] = Walk THEN...

Testing for category name in a SET field is done differently than for an
enumerated field. The IN notation is used, but the order is reversed. To test for
several item categories at once use OR. For example (where Travel is the field
name and Train and Car are categories):

IF Train IN Travel THEN...

IF (Train IN Travel) OR
 (Car IN Travel) THEN...

The CARDINAL function is the only function with a SET field as an argument. It
returns the number of responses chosen for a field.

Stored values of enumerated and set fields
The values in enumerated fields and SET fields are stored as code numbers. The
first item in the list is assigned code 1, the second gets code 2, and so on. You can
specify your own code numbers to overrule this coding scheme. You do that by
adding numbers in parentheses between category names and category texts.
Consider the following example:

Travel "How do you travel to your work?" : SET [3] OF
 (NoTravel (0) "Do not travel, work at home"
 PubTrans "Public bus, tram or metro",
 Train "Train",
 Car (4) "Car or motorcycle",
 Bicycle "Bicycle",
 Walk "Walk",
 Other (9) "Other means of transport")

This means that NoTravel is coded as 0. Subsequent values are coded in
ascending order until a new code is encountered. Here PubTrans is coded as 1
and Train as 2. The codes of the other values are 4 for Car, 5 for Bicycle, 6 for
Walk, and 9 for Other.

Chapter 3: Data Model Basics

82 Blaise 4.5

! If you have more than 9 choices in a SET field you should consider starting
the first one with code 10. The reason is that the key sequence 113 may be
evaluated as 1-13 or 11-3. You can avoid this confusion if all values in the
set definition have the same number of digits.

! It is not possible to define non-ascending numbers.

Type compatibility for SET fields
You can compute values from one SET field to another, if the same type defines
them. This is shown in the following example in setcomp.bla (also in
\Doc\Chapter3):

DATAMODEL SetComp "Data model to test computations in set questions."

TYPE
 TColours = (red, yellow, blue)

FIELDS
 MyColours "Enter my favorite colours.": SET OF TColours
 YourColours "Enter your favorite colours.": SET [2] OF TColours
 . . .

RULES
 MyColours
 YourColours := MyColours

The assignment YourColours := MyColours works even though YourColours
takes only two values and MyColours can take up to three. If three choices are
entered in the field MyColours, the first two responses will be computed into
YourColours.

 Chapter 3: Data Model Basics

Developer's Guide 83

You can also do a direct computation into a SET field with the following syntax:

FIELDS
 HisColours : SET [2] OF TColours

 . . .

RULES
 HisColours := [red, blue]

{
 or for example

 HisColours := [red]
}

You can refer to a specific element of a SET field with the array notation using
square brackets. In the following example, the enumerated field
MyFavouriteColour gets the value of the first element of the SET field
MyColours.

FIELDS
 MyFavoriteColour "My favorite colour is the first entry of MyColours."
 : TColours

RULES
 MyFavoriteColour := MyColours[1]

The assignment from a SET field to an enumerated field is done through specific
reference to the first element of the field MyColours.

In a variable text fill, you can also refer directly to the specific elements of a SET
field as shown in the following example:

FIELDS
 ShowFill "This shows the values of the elements of MyColours.
 @/
 @/MyColours[1] = ^MyColours[1].
 @/MyColours[2] = ^MyColours[2].
 @/MyColours[3] = ^MyColours[3]."
 : STRING[1], EMPTY

Dynamic text in types
You can have dynamic type texts for enumerated or set types. This is
accomplished by using text fills in the category texts. This is used in a variety of
ways, from simple tailoring of a few words in a text, to the construction of fully

Chapter 3: Data Model Basics

84 Blaise 4.5

dynamic content for all type responses, in order to implement variable lists and
randomly ordered response choices. Here is an example:

TYPE
 THHList = (Person1 "^HHPerson[1]",
 Person2 "^HHPerson[2]",
 Person3 "^HHPerson[3]",
 Person4 "^HHPerson[4]",
 Person5 "^HHPerson[5]"
)
AUXFIELDS
 HHPerson : ARRAY[1..5] OF STRING[20]
FIELDS
 Person: ARRAY[1..5] OF BPerson
 MedHelp "Who needs Medicare help?" : THHlist
RULES
FOR I:= 1 TO HHSize DO
 Person[I]
 IF Person[I].Age > 59 THEN
 ExitSwitch := 0
 FOR J := 1 TO 10 DO
 IF HHPerson[J] = EMPTY AND ExitSwitch = 0 THEN
 HHPerson[J]:=Person[I].Name
 ExitSwitch := 1
 ENDIF
 ENDDO
 ENDIF
ENDDO
MedHelp

Reserving extra space for enumerated and set fields
All the values for an enumerated or set field are not always identified before an
instrument is fielded. In these cases you can reserve extra space for added future
options.

To reserve space create an enumeration or set field. For each category that will be
used as a place holder for future choices, make the category texts a null value
(two double quotes).

 Chapter 3: Data Model Basics

Developer's Guide 85

The syntax to reserve space for both enumerated and set fields are similar. The
syntax for the type of a set field is shown in the following code example:

TYPE

 TTravel =
 (NoTravel (01) "Do not travel, work at home",
 PubTrans (02) "Public bus, tram or metro",
 Train (03) ,
 Car (04) "Car or motor cycle",
 Bicycle (05) "Bicycle",
 Walk (06) ,
 Future1 (07) "",
 Future2 (08) "",
 Future3 (09) "",
 Other (97) "Other means of transportation")

When reserving extra space it is not always desirable to display the category
identifiers that will be used for future choices. In order to hide those place
holders, the enumeration or set must be defined as a user type. See the example
code above. After creating the type, select the Project/Datamodel properties
menu item, the type tab and then from the tree, the user type you created. Check
Hide empty values.

If need be, you can also hide the category codes. To accomplish this, toggle the
field Show Code Numbers on the info panes layout tab in the mode library.

Date type
A date field is a special field type that only accepts dates as values. For example:

Birth "What is your date of birth?" : DATETYPE

For data entry, Blaise uses the date format that is specified under Windows®
regional settings (the short date format). The date separator can be a space or the
separator according to the Windows® regional settings (for example, /). The valid
range is from 1/1/1 to 31/12/9999.

For developers, a date field can use a wide variety of date functions. This
eliminates the need to program tricky date calculations. For example, the
following will give the current date according to the computer, the number of the
week in the year, the number of the day of the week, the current year of the field
BeginDate, and the number of days since 1-1-1:

Chapter 3: Data Model Basics

86 Blaise 4.5

DateNow := SYSDATE

NumWeek := WEEK(BeginDate)

NumWeekDay := WEEKDAY(BeginDate)

NumYear := YEAR(BeginDate)

JulianDate := JULIAN(BeginDate)

To calculate the number of days in the current year, where the field NewYearsEve
gives the date of New Year’s Eve of the current year (calculated elsewhere):

DaysSoFar := TodaysDate - NewYearsEve

To add a number of days to a date, you can use any of the following first three
forms:

NewDate := BeginDate + 10

NewDate := BeginDate + (10)

NewDate := BeginDate + (0, 0, 10)

NewDate := BeginDate + (1, 1, 1)

NewDate := BeginDate + (NumYears, NumMonths, NumDays)

NewDate := BeginDate - (NumYears, NumMonths, NumDays)

In the first line, since there is just one integer with no parentheses, Blaise will
assume the 10 to be a number of days. To add just a number of days you could
also use the abbreviated DeltaDate notation, as shown in the second line, or the
full DeltaDate notation in the third line. In order to add years or months to the
date, you must use the full DeltaDate notation as shown in the fourth and fifth
lines. You can subtract from a date as shown in the sixth line. The entries in the
DeltaDate notation can be integers or expressions.

For a ready-made demonstration of time and date functions, you can prepare the
data model timedate.bla in \Doc\Chapter3 of the Blaise system folder.
Refer to the Reference Manual for a full listing of date functions, When using the
SYSDATE or STARTDATE functions, you must make sure all computers have the
date correctly set.

Blaise is year 2000 compliant. It stores dates with all four digits of the year. The
default setting in the Data Entry Program (DEP) configuration file is to enter all

 Chapter 3: Data Model Basics

Developer's Guide 87

four digits of the year, but you can change this to allow the user to enter only two
digits for the year. (See Chapter 6 for information on the DEP configuration file.)

Time type
Another special field type is the time field, which stores time values. Here is an
example:

TimeTravel "At what time do you start work?" : TIMETYPE

Acceptable time values have to consist of three elements: hours, minutes, and
seconds. Seconds will only be shown if they are non-zero or if specified in the
regional settings of Windows®. All three have to be specified as integer values,
separated by a colon (:).

Examples of accepted inputs are:

8:12:3 8:12:03 08:12:0300 8:12

The latter example shows that you may leave out the seconds. You can also leave
out minutes. In the example above, 8:12:3 is recorded as 8:12:03, not as 8:12:30.

The user can enter a time using either the am/pm notation or the 24-hour clock.
This depends on how the time setting on the computer is set up. The default
display setting for time fields is for hours and minutes, even though the seconds
(and hundredths of seconds) are recorded internally.

A large number of time functions can be used with time fields. These are very
similar to the date functions documented above. You can prepare the example
data model timedate.bla in \Doc\Chapter3 for a demonstration. Also refer
to the Reference Manual for a full list of time functions. When using the functions
SYSTIME or STARTTIME, it is imperative that all computers have the correct time
set.

The function STARTTIME gives the time when the current form was brought onto
the screen. This time will stay constant until the form is closed. When the form is
brought back onto the screen, the STARTTIME field will be recomputed.

The function SYSTIME will return the computer time at the instant the rules invoke
it. Usually you want to use SYSTIME to capture a time stamp, for example, to see
how long it takes to progress through sections of an interview. In this case, you

Chapter 3: Data Model Basics

88 Blaise 4.5

must embed the SYSTIME function in an IF condition so that it is calculated only
one time:

TimeStamp.KEEP
IF TimeStamp = EMPTY THEN
 TimeStamp := SYSTIME
ENDIF

The first instruction, TimeStamp.KEEP, is necessary to put the field on the route. If
you omit this instruction, TimeStamp will always be empty in the condition.

Field methods such as ASK, KEEP, and SHOW are covered in the text to follow.

Classification type
To perform hierarchical coding, a classification type is needed. Hierarchical
coding and the classification type are discussed in Chapter 5.

Arrayed fields

An arrayed field defines a series of fields of the same type. Arrayed fields are
useful for storing characteristics of a series of objects, like the gender of all the
members of a household. For example:

Gender "Are you male or female?" : ARRAY [1..10] OF (Male, Female)

This represents a series of 10 fields, with the names Gender[1], Gender[2],,
Gender[10]. Arrays are particularly powerful if the basic field type is a block or a
table. For example, you can have an arrayed block within a table, then array the
table itself. This offers the possibility of implementing multilevel rostering
(hierarchical) and relational data models. For more information about arrayed
blocks and tables, see Chapter 4.

3.2.2 TYPE section
We described the basic field types of the Blaise language in the section above.
There, all types were defined at the field to which they were attached. With the
TYPE section, you can define reusable type definitions (or just types), then use
them in later sections. The general scheme for defining a user type is:

TypeName = FieldType

 Chapter 3: Data Model Basics

Developer's Guide 89

TypeName is an identifier. It follows the rules for identifiers. FieldType is one of
the field types described above. This is illustrated in the following example:

Suppose you have a survey that asks about current commuter behaviour and
commuter behaviour one year ago. There are two questions about transport to
work. One refers to the current situation and the other to last year. These two
questions have different question texts but the same type defined in a type
section:

TYPE
 TTravel = SET [3] OF
 (NoTravel "Do not travel, work at home",
 PubTrans "Public bus, tram or metro",
 Train "Train",
 Car "Car or motor cycle",
 Bicycle "Bicycle",
 Walk "Walk",
 Other "Other means of transport")
FIELDS
 TravelNow "How do you travel to your work at the moment?" : TTravel
 TravelThen "How did you travel to your work one year ago?" : TTravel
RULES
 TravelNow
 TravelThen

TTravel is a reusable type that can be used to define fields. The two fields
TravelNow and TravelThen are defined by referring to TTravel.

! A good programming practice is to use the convention that the names of
user-defined types start with a capital T. This makes it easy to distinguish
type names from other identifiers.

Advantages of TYPE sections

Defining types in the TYPE section has a number of advantages:

• It reduces the amount of coding you have to do.

• It avoids the risk of recording differences in responses that should be exactly
the same.

• Maintaining existing data models becomes much easier. If you decide to
change a field type that is used several times in your data model, you only
have to make one change.

• The use of reusable types allows a clearer view of the data model.

Chapter 3: Data Model Basics

90 Blaise 4.5

• If you want to directly compute the value of one enumerated field into
another, the common use of the same type is an absolute necessity.

• Data entry masks are defined in terms of types, for example Tdollar for a
currency amount

For these reasons, we strongly encourage you to use a TYPE section.

In defining types you may use other user-defined types. In the following example,
TTravel is a type of the previously defined type TTransport:

TYPE

TTransport = (NoTravel "Do not travel, work at home",
 PubTrans "Public bus, tram or metro",
 Train "Train",
 Car "Car",
 Bicycle "Bicycle"
 Walk "Walk",
 Other "Other means of transport")

 TTravel = SET [3] OF TTransport

Types from the TYPE section can be used to define fields, auxfields, additional
user-defined types, set types, and block parameters (covered in Chapter 4).

A Block may be considered a FieldType. This is so important for efficient and
wise programming in Blaise that all of Chapter 4 is devoted to this and related
concepts.

Type libraries
Survey organisations will find it profitable to standardise the types that are used
in two or more surveys. This will make programming quicker and make it easier
to compare survey results. Interviewers and data editors will also appreciate the
common standards between surveys. Types can be shared by many applications in
two different ways. They can be incorporated with an INCLUDE statement or they
can be stored in a pre-compiled type library.

A TYPE section can be held in another text file and incorporated in a data model
with the INCLUDE statement. For example:

INCLUDE "Mylib.lib"

 Chapter 3: Data Model Basics

Developer's Guide 91

The type library is prepared just like a data model except that the first key word is
LIBRARY. A very simple type library:

LIBRARY MyLib
 TYPE
 TYesNo = (Yes, No)
 TMarStat = (Single, Married, Divorced)
ENDLIBRARY.

To use the type library from a data model, name the type library in a LIBRARIES
section. Then, for any field in the data model, refer to any type in the usual
manner. For example:

DATAMODEL UsesLib
 LIBRARIES MyLib
 FIELDS
 WillYou : TYesNo
 Married : TMarStat
ENDMODEL

You can refer to the file name including path, if necessary. For example:

LIBRARIES MyLib'\BlaiseLib\MyLib'

If the library is held in the main development directory, the path name is
unnecessary.

LIBRARIES MyLib

! Only elementary types can be defined in a type library. SET, ARRAY, and
derived types are not allowed in a TYPE library. These can be defined in a
TYPE section outside of the library.

In large organisations, the use of several type libraries may make it easier for
departments to maintain their types separately. You can use several type libraries
in a data model. For example:

DATAMODEL ManyTypes
 LIBRARIES
 SocialTypes, EconTypes

If there are duplicate type names between type libraries, the latest definition will
be used. You can refer to a type in a specific library using the dot notation. In this

Chapter 3: Data Model Basics

92 Blaise 4.5

example, the field Married is specifically defined with reference to the
SocialTypes library:

DATAMODEL ManyTypes
 LIBRARIES
 SocialTypes, EconType
 FIELDS
 WillYou : TYesNo
 Married : SocialTypes.TMarStat
ENDMODEL

Another way to guard against duplicate type names between different
departments is to define one type library from several different ASCII files. For
example:

LIBRARY AllTypes
 INCLUDE "SOCIAL.LIB"
 INCLUDE "ECON.LIB"
END.

If there are duplicate type names in this latter example, they will be caught during
preparation of the library. The first lines of the main data model file would look
like this:

DATAMODEL ManyTypes
LIBRARIES
 AllTypes

! You should avoid having someone change a type definition without telling
others. If this happens, instruments may not prepare. There may be
database incompatibilities, or you may have an instrument that works in an
unexpected way.

Not all types have to appear in the type library. If there are types used by just one
survey, these can be mentioned separately in the survey data model in a type
section. The extension of the type library is .bli.

 Chapter 3: Data Model Basics

Developer's Guide 93

Where to define types
Use the following rules to determine where to define types. They are not required,
but they do represent good programming practice:

• If the type is used one time in one survey, define the type at the field in the
FIELDS section or in a TYPE section.

• If the type is used twice or more in one survey, define the type in the TYPE
section of the data model.

• If the type is used in two or more surveys, define it in a type library or in an
INCLUDE file of types.

• If the type is a dynamic type, it has to be declared after the local, auxfield, or
field that defines the dynamic type text.

• If the type is a dynamic type using several or many array elements, define the
type in the block where it is used. This is for performance reasons as
explained in Chapter 4.

You can use all of these methods in the same data model. This could be done in a
data model of any size.

It is easier to include a text file of a TYPE section than to prepare a type library.
However, a type library protects against changes and, in extremely large
instruments, preparation of the instrument may be faster with a pre-compiled type
library.

3.2.3 Answer attributes
We complete the description of fields by describing the special answer attributes
you can assign to them. These are available in the Data Entry Program by using a
special key. The following special attributes are available:

• DONTKNOW or DK: Don’t know response is allowed.

• NODONTKNOW or NODK: Don’t know response is not allowed; this is the
default.

• REFUSAL or RF: Refusal response is allowed.

• NOREFUSAL or NORF: Refusal response is not allowed; this is the default.

• EMPTY: The field can be left empty, even if on route.

• NOEMPTY: A value must be entered or computed; this is the default.

Chapter 3: Data Model Basics

94 Blaise 4.5

Internally, Blaise stores DONTKNOW and REFUSAL as statuses associated with a
field, not as special numeric entries in a field.

You can specify special attributes after the answer definition (see the text to
follow about setting attributes at the block or data model level). Use commas to
separate attributes from the answer definition and from each other. The scheme
for the special attributes is:

FieldName : FieldType, SpecAttr1, SpecAttr2, ...

SpecAttr1, SpecAttr2, denote the special attributes. The default attributes are
NODONTKNOW, NOREFUSAL, and NOEMPTY. The following examples illustrate
how these attributes can be used:

Gender "What is your Gender?"
 : (Male, Female), NODONTKNOW, NOREFUSAL

Distance "What is the distance to your work?" : 0..300, EMPTY

In the above example, the question Gender must really be answered; the answers
'don't know' or 'refusal' are not accepted. The question Distance may be left
unanswered.

The EMPTY attribute should be used judiciously. You do not want interviewers to
be able to avoid questions that must be asked. If the interviewer has navigated
backward and presses the End key on the keyboard, she will skip past a field on
the route that has the EMPTY attribute, even if it has not yet been asked.

Fields with the SHOW or KEEP methods must get values through computation.
These methods are covered in the text to follow. Make sure that they have a value
definition large enough to accept any possible computation that can happen in the
instrument. If a field is assigned a value outside its range, the user will get a
message about an imputation error and will not be able to continue. This is
demonstrated by the data model testcomp.bla in \Doc\Chapter3.

A field which has the status REFUSAL or DONTKNOW or holds the EMPTY value
will be evaluated as a zero when referring to its value in an IF condition. In these
cases, you must be very explicit in what you want to happen.

 Chapter 3: Data Model Basics

Developer's Guide 95

For example:

FIELDS
 ...
 TotalDist "What is the total distance to your work?"
 : 0.0..300.0, REFUSAL, DONTKNOW, EMPTY
 MethodOfTransport "What is the primary method of transport?" :
 TTransport, RF

RULES
 IF TotalDist <> EMPTY THEN
 MethodOfTransport
 ENDIF

The field MethodOfTransport is asked if TotalDist has a positive value or an
answer of DONTKNOW or REFUSAL.

The IF condition above could have been written as either of the following,
depending on the needs of the survey:

IF (TotalDist > 0) OR (TotalDist = DK) THEN

IF TotalDist = RESPONSE THEN

While the value of DONTKNOW or REFUSAL is evaluated as zero internally, the
ASCII representation is different. In the ASCII data set, the value for REFUSAL is
all 9s with the last digit of 8. The ASCII value for DONTKNOW is all 9s.

For example, for a field with range 1..200, the ASCII representation of refusal
will be 998, while the representation for DONTKNOW will be 999. If the value of
REFUSAL or DONTKNOW in ASCII would be a valid value within the defined
range, then the number of characters taken for the field in ASCII will increase by
1. Thus, in ASCII a field with a defined range of INTEGER[3] will represent
REFUSAL as 9998 and DONTKNOW as 9999.

The same thing will happen with enumerated questions with eight or nine choices.
This will be transparent to the user. If data are read out of and then into Blaise, all
REFUSAL and DONTKNOW statuses will be preserved. Cameleon will correctly
specify the ASCII representation, taking into consideration values for REFUSAL
and DONTKNOW where applicable.

See the data model statuses.bla in \Doc\Chapter3 for a thorough review of
statuses and their effect on the ASCII representation.

Chapter 3: Data Model Basics

96 Blaise 4.5

The ASCII representation of REFUSAL and DONTKNOW may be problematic when
importing the ASCII data into another package. There are three solutions:

• Run the ASCII data through a Manipula program you create to convert the
REFUSAL and DONTKNOW values into something the other package is
expecting.

• Use the other package to make the translation.

• Define your own REFUSAL and DONTKNOW values in the applicable field
definitions.

For example, if -1 is the value expected by the other package for nonresponse,
you can define a numeric type as follows:

TYPE
 Sev9sM = -1..9999997 {seven digits from minus 1}

FIELDS
 Money : "How much money do you have with you?" : Sev9sM

To avoid having an ASCII data set expand to handle values for REFUSAL and
DONTKNOW, do not use ranges such as 1..999 or INTEGER[3]. Some survey
organisations set up special types to handle such integers. They define integers as
reusable types in the TYPE section with a 7 as a last digit. For a three-digit integer
field, this will preclude using 998 or 999 as valid answers. If these are potentially
valid, you probably need an extra digit anyway. See the type Sev9sM in the
example above.

Attributes may be given at the block or instrument level in a settings paragraph
with the key word ATTRIBUTES. For example:

BLOCK Attrib
 SETTINGS
 ATTRIBUTES = REFUSAL, DONTKNOW,
 FIELDS
 . . .

Settings are applied to every field in the block. You can override the block
settings at a field by applying converse settings at the field. Block attributes
reduce programming code and make it more readable.

You can also set global attributes at the data model level. This is done similarly,
but the key word SETTINGS is omitted.

 Chapter 3: Data Model Basics

Developer's Guide 97

For example:

ATTRIBUTES = REFUSAL, DONTKNOW

3.2.4 Enhancing texts
Texts and descriptions are used in many places throughout the Blaise language.
For the interviewer you can enhance text in ways that clarify the question text or
instructions. You can use different fonts and font sizes, colours, bold, underline,
or italics to highlight certain words; spaces and tabs to separate words of text; and
linefeeds to separate lines of text. Fields, auxfields, or locals can be variable fills
within the text. Cue words can be defined that mean something special to the
interviewer.

Your organisation should state and enforce text-enhancement conventions.
Conventions make it very easy for an interviewer to switch between applications.
This would make the interviewers happy and avoid a lot of reformatting of field
texts when the complaints pour in or when the organisation decides to standardise
after the fact.

You could have different text enhancement conventions for each of the following:

• Fills

• Name of respondent

• Question text

• Information text

• Designation of a hard error

• Designation of a soft error

• Difficult concepts.

You may have conventions for text spacing, such as:

• Question text appears by itself

• One line space between question text and instruction text.

Spacing
When Blaise displays text in the InfoPane, multiple, leading, and trailing spaces
in the source code are ignored. If text in the source code file continues on the next
line, one space is inserted.

Chapter 3: Data Model Basics

98 Blaise 4.5

Examples of texts are:

"What is your name?"

"You are too young to be married!"

"What is the distance (in km) to your work?"

On the InfoPane the latter example will be converted to

What is the distance (in km) to your work?

as all but one space between words will be ignored.

The Data Entry Program (DEP) will take care of wrapping the text if necessary,
so that it will always be readable by the user. A setting in the mode library
program allows you to set text margins in the info pane. See Chapter 6, Section
6.5.4, Mode library file: Layout.

You can insert special layout commands to control the screen layout. For
example, a new line command is generated by inserting @/ in the text. In the
following example, we have included this command:

"What is your address? @/Please enter street and number:"

When this text is displayed on the screen, it will look like this:

What is your address?
Please enter street and number:

Hard space
Usually spaces in text are skipped. If you want a space in your text that will not
be skipped, hold the Ctrl key and type a period (Ctrl-.). Typing the following in
the source code:

"What is your address? @/.....Please enter street and number:"

 Chapter 3: Data Model Basics

Developer's Guide 99

will appear on the screen as:

What is your address?
 Please enter street and number:

if a non-proportional font is used. If you use a proportional font, it is best to use
tab stops to space text (see the text to follow).

Font, font size, colour, bold, and underline
You can use different fonts, font sizes, colours, bold, underline, or italics to
improve the readability of texts on the screen. Adding enhancements to text is a
two-step process. First, you assign meaning to special enhancement codes @A to
@Z (if you do not want to use the defaults). This is done in the mode library file.
For example, you could assign the colour code for red text to the enhancement
marker @R and you could assign codes for underscore and bold text to the
markers @U and @B.

Second, insert an enhancement marker in the question text. Commands may be
nested. If @B stands for bold text, and @G for green, the following text:

"@GWhat is your address?@/@/.....@BPlease enter street and number:"

will be displayed in different enhancements. The part 'What is your address?' will
be green and 'Please enter street and number' will be in green and bold. In other
words, the text enhancements are additive.

Repeating the command switches back to the previous enhancement. If @B is the
colour command for bold text, the initial colour of the text

"@GWhat is your @Baddress@B?@/Please enter @Bstreet@B and @Bnumber@B:"

is green. The words address, street, and number will be green and bold.

You do not have to switch off enhancements at the end of the text. This is done
automatically. If you want the whole text in a specific enhancement, one
command at the beginning is sufficient.

Chapter 3: Data Model Basics

100 Blaise 4.5

! The introduction of fonts increases screen design flexibility. With
proportional fonts, control of font sizes, and judicious use of bold, italics,
and underscore for interviewer instructions, it is possible to place a great
deal of information in the question text part of the DEP window. An
important ramification of this is that the page part of the screen (the
FormPane) can also contain more information. A full description of fonts
and how to use them is in Chapter 6.

An advantage of having text-enhancement assignments stored externally is
apparent in multi-platform environments. For example, you may have an
application running on in-office CATI with one screen resolution and the same
application on laptops with a different resolution. By using two different versions
of the external configuration file, you can use the same instrument and have
appropriate displays in both environments. Screen resolution and font size choice
interact to determine how much text can fit in the InfoPane (question text part) of
the interviewing instrument. See Chapter 6 for details.

Characters ^, @, "
The characters ^, @, and " have a special meaning in texts. If you want to use
those characters as normal symbols, you have to write them twice. For example:

"Do you know the characters ^^, @@ and ""?"

is displayed as:

Do you know the characters ^, @ and "?

Tab stops
The use of proportional fonts can increase the readability of text for the user.
However, spacing text in a proportional font cannot be done effectively with the
special hard space dot character. To space text in a proportional font, use tab
stops.

To insert a tab stop in the text, use the symbol @|, either alone or in combination
with a letter. For example, the following uses the default tab stops:

@|Name @|Address @|Town

 Chapter 3: Data Model Basics

Developer's Guide 101

You can also define tab stops for each letter. The following uses tab stops for the
letter T:

@T@|Name @|Address @|Town

To specify two or more tab stops, use the symbol twice, for example:

@T@|Name @|Address @|@|Town

The above would place two tab stops in front of Town. Chapter 6 describes how
to set tab stop definitions for letters in the DEP configuration file.

Variable text fills

To improve the readability of texts, you can use information that comes from
other fields in the data model. You can refer to a parameter field, auxfield, or
local variable by including its name preceded by the special character ^. A field
can be anywhere in the data structure, as long as you specify the correct path to it.
A local variable must be in the scope of the current block. If you have a field
called Name in the same block as the text, then you can use the value of this field
in a text in the following way:

FIELDS
 Name "What is the name of the head of the household?" : STRING[20]

 Age "What is the age of ^Name?" : 0..120

The DEP will replace Name in the text of Age by its current value. For example,
if the field Name contains the value 'Martin Turbo,' the text becomes:

What is the age of Martin Turbo?

If you refer to a field that is not in the current block or a higher block, you can use
a parameter reference (preferred) or the dot notation. You will find more about
this in Chapter 4.

Text fills use data model properties formatting, e.g., social security number,
telephone number, or a date type.

For an example of formatting of field and edit check text, prepare and view
format.bla in \Doc\Chapter3 under the Blaise system folder.

Chapter 3: Data Model Basics

102 Blaise 4.5

3.3 Auxiliary Fields (Auxfields)

You may want the Data Entry Program to put an entry cell in the FormPane of the
screen without storing its value in the data file. This is done with an auxiliary
field or an auxfield. An example would be a screen label that is a visual guide to
those who are paging through the instrument. Another example is a message.
Sometimes you may want to display a message on the screen that contains
information that should be read before one continues to the next question. You
would also use an auxfield if you want to perform an intermediate calculation
involving enumerated types or if you want its value to be re-initialised every time
the form is brought into memory, but not every time the rules are invoked.

! Do not use auxfields as filter questions to control routing! If you depend on
auxfields for routing questions you will get through the questionnaire
correctly the first time. However, if you retrieve the form and then store it
without filling in the filter questions again, you will lose data!

Auxfields section
The structure of the AUXFIELDS section is identical to that of the FIELDS section.
The only difference is how you announce this section: write AUXFIELDS instead
of FIELDS.

The following partial model specification contains an example of an AUXFIELDS
section:

 Chapter 3: Data Model Basics

Developer's Guide 103

FIELDS
 Job "Do you have a paid job?" : (Yes, No)
 Descrip "Give a short description of your job" : STRING[40]
 WorkHome "Do you work at home" : (Yes, No)
 Distance "What is the distance to your work?" : 0..300
 Travel "How do you travel to your work?" : SET [3] OF TTravel

AUXFIELDS
 Info "The next two questions are about how you travel to your work.
 @/ Please try to describe the normal situation.
 @/@/ Press Enter" : STRING[1], EMPTY

RULES
 Job
 IF Job = Yes THEN
 Descrip
 WorkHome
 IF WorkHome <> Yes THEN
 Info
 Distance
 Travel
 ENDIF
 ENDIF

The auxfield Info displays a message. It will appear on the screen just before the
questions Distance and Travel are asked. Note the answer type of Info. By
defining it as STRING[1], we allow any symbol to be accepted as answer, and by
adding the attribute EMPTY, we allow the auxfield to remain empty. Pressing
Enter is sufficient to continue to the next question. The question Info is defined in
the AUXFIELDS section, so its value will not be stored.

You can mix FIELDS and AUXFIELDS sections. Remember to put the FIELDS key
word after the AUXFIELDS section; otherwise you will find that some data are not
stored.

FIELDS
 FirstName "What is your first name?" : STRING[15]
 SurName "What is your surname (last name) ^FirstName?" : STRING[20]
AUXFIELDS
 Info "Now we want to know about your job." : STRING[1], EMPTY
FIELDS
 HaveJob "Do you have a job?" : (yes, no), REFUSAL, NODONTKNOW

Auxfields used as a page label
An important use of an auxfield is to place a label in the page of the interviewing
screen. This kind of label can be used to announce a section and to give the
interviewer a landmark that can be used for page-based navigation. If you use a
field tag that is the section letter, the interviewer can jump to the section any time

Chapter 3: Data Model Basics

104 Blaise 4.5

that it is on the route. In the following example, the interviewer can jump to A to
get back to section A if it has already been filled in and passed.

AUXFIELDS
 Label (a) "@W[INTERVIEWER] You are entering section A on Demographic
 data." : STRING[20], EMPTY

In the RULES section, you make a string computation and place the auxfield in the
rules above the other fields in the block.

RULES
 Label := 'Demographic data'
 Label
 FirstName
{etc.}

Rules and computations are covered in the following section.

3.4 Local Variables (Locals)

Another entity that can hold information is the local variable, or local. Its value is
never asked or displayed on the FormPane but is always computed. Locals are
used as control variables to loop through arrays, and you can use them to store
intermediate results in complex computations. Such computations are sometimes
necessary to determine the correct route through the fields. Edits may also require
computations, and locals are often used in edit messages to display the result of
such calculations. See the following example of a local used in the RULES section.

The life span of a local is even shorter than that of an auxfield. Whenever a
RULES section is invoked during an interview or data editing, locals are
reinitialised. This means that every time you change a value in a field, the local
variable loses its current value.

Locals section
Locals are declared in a section that starts with the reserved word LOCALS. You
can have integer, real, or string variables, but not enumerated types. You can
define arrays of local variables:

 Chapter 3: Data Model Basics

Developer's Guide 105

LOCALS
 Total, Ncases : INTEGER

 Average : REAL

 JobDescr : STRING[40]

 Names : ARRAY [1..20] OF STRING[16]

 Weights : ARRAY [1..10, 1..5] OF REAL

Total and Ncases are local variables of the same type, so they can be introduced
in one statement. They are both integer variables. Average is a real variable, and
JobDescr is a text variable that can hold at most 40 characters. Names is an array
of 20 text variables Names[1], Names[2], ... Names[20]. The final instruction
introduces a two-dimensional array. Such a construct can be useful for working
with tables (see Chapter 4).

The scope of local variables is limited to the block and sub-blocks in which they
are defined. It is not possible to refer to such a variable outside its block and
nested sub-blocks. When using locals as control variables for loops, it is required
that the local be declared in the block to which the loop belongs.

A good programming practice in Blaise is to declare locals at the lowest block
level possible. This allows the block to be more independent of the rest of the
code and hence more reusable in this and other applications. Just as importantly,
declaring locals at the lowest level possible will help ensure that performance of
applications is optimal.

Chapter 3: Data Model Basics

106 Blaise 4.5

3.5 Summary of Fields, Auxfields, and Locals

The following table summarises the properties of fields, auxiliary fields, and local
variables (locals):

Figure 3-1: Summary of fields, auxfields, and locals

 Field Auxfield Local

Value Asked or computed Asked or computed Computed

Storage In database Temporary, in
memory

Temporary, in
memory

Scope Can be used
outside block in
which declared

Can be used outside
block in which
declared

Only within block in
which declared
(and sub-blocks)

Lifetime Permanent Only for current
form/case

Only for current
form/case

Re-initialised Never Every time form is
brought into memory

Every time RULES
section is
processed

Type All types valid All types valid Only REAL,
INTEGER,
STRING[], and
ARRAY

Display Can appear in the
FormPane

Can appear in the
FormPane

Cannot appear in
the FormPane

Methods Can take ASK,
KEEP, and SHOW

Can take ASK, KEEP,
and SHOW

Cannot take
methods

Text in
InfoPane

Associated text can
appear in the
InfoPane

Associated text can
appear in the
InfoPane

No associated text

Variable text fill Can be used as a
fill

Can be used as a fill Can be used as a
fill

Effect on block
(re) checking if
passed to the
block

Causes block
recheck only if its
value changes

Causes block recheck
only if its value
changes

Causes block
recheck only if its
value changes

 Chapter 3: Data Model Basics

Developer's Guide 107

3.6 Rules

The RULES section describes how fields are processed. It starts with the reserved
word RULES. There are four types of rules: route instructions, edit checks,
computations, and layout instructions. If this section is omitted, all the fields that
are specified in the FIELDS section will be processed in the same order they are
specified.

3.6.1 Route instructions
Route instructions describe the order of processing for fields and auxfields.
Processing the route means deciding which questions will be asked at what time.

Writing down the name of a field or auxfield means processing it. The simplest
form of routing instructions is the following:

RULES
 Name Gender Age Married

or:

RULES
 Name
 Gender
 Age
 Married

since layout of the source code is free. These route instructions tell the system to
process the fields (to ask the questions) in the specified order.

3.6.2 Route field methods
When you write the name of a field or an auxfield in a routing instruction, you
instruct Blaise to process the field. This means that the system must apply a
processing method to the field. Blaise has four methods: CLASSIFY, ASK, SHOW
and KEEP. ASK is the default.

You instruct the Data Entry Program (DEP) to apply a method by adding the
method name to the field name with the dot notation where the field name is
followed by a full stop (period) and the method name. If the field name is Town,
you may write either Town.ASK, Town.SHOW, or Town.KEEP. Since the default

Chapter 3: Data Model Basics

108 Blaise 4.5

method of a field is ASK, the two routing instructions Town and Town.ASK are
equivalent.

CLASSIFY
The CLASSIFY routing method puts a classification type field on the route, to
show and edit it. See Chapter 5, Special Topics, for more information on
classification types and the use of CLASSIFY.

ASK
The method ASK shows the field on the screen so the user can enter a value.

SHOW
The method SHOW shows the field and its value on the screen. In the FormPane
(page), the user will not be able to land on it and will not have the opportunity to
change the value. You typically SHOW a field to give information to the user, as
with a label in the page. It is possible to use the mouse to land on a show field,
but you can not change its value.

KEEP
The method KEEP means that the field is not shown on the screen. The user will
not be aware that this field exists. The value of the field will be stored in the
Blaise data file if the field is defined in the FIELDS section, but the KEEP is
considered to be at the end of the RULES section.

If you SHOW or KEEP a field, its value must be computed. If a field is computed
but otherwise not mentioned in the RULES, the KEEP method will automatically be
applied at the point of computation.

If a field is defined in the FIELDS section but is not mentioned in the RULES
section, it gets the KEEP method.

Here is an example of the use of the ASK, SHOW, and KEEP methods similar to the
showkeep.bla found in \Doc\Chapter3 of the Blaise system folder.

 Chapter 3: Data Model Basics

Developer's Guide 109

DATAMODEL ShowKeep "Demonstrates SHOW, KEEP, and ASK methods."
 FIELDS
 Intro "This is an instrument to show you the effect of SHOW and KEEP
 field methods on the display of fields on the FormPane." :
 STRING[1], EMPTY
 TodayDate "Today's date" : DATETYPE
 TimeStamp "Interview completed" : TIMETYPE
 Name "What is your name" : String[20]
 RULES
 TodayDate.SHOW
 Intro.ASK
 IF TodayDate = EMPTY THEN
 TodayDate := SYSDATE
 ENDIF
 TimeStamp.KEEP
 IF TimeStamp = EMPTY THEN
 TimeStamp := SYSTIME
 ENDIF
 Name.ASK
ENDMODEL

The question asked is Name. Name.ASK is equivalent to Name. The field
TodayDate is assigned a value by means of a computation. It is the result of the
standard function SYSDATE that reads the system date of your computer. The
value of TodayDate is shown on the screen.

The value of the field TimeStamp is computed but not shown.

The value assigned is the result of the standard function SYSTIME, which reads the
system time of your computer. TimeStamp is stored in the data set and the user
never sees it.

Notice the construct:

TimeStamp.KEEP
IF TimeStamp = EMPTY THEN
 TimeSTamp := SYSTIME
ENDIF

It is necessary to put TimeStamp.KEEP before the IF condition involving the field
TimeStamp so that the rules would know of the value of TimeStamp. Without the
TimeStamp.KEEP placed before the IF condition, the IF condition would evaluate
TimeStamp as EMPTY even if it already had a value.

Preventing return to some questions
You can use the KEEP method to prevent users from returning to some questions
after they have been answered. This is called a wall. This might be done for

Chapter 3: Data Model Basics

110 Blaise 4.5

reasons of confidentiality, as shown in the example keepdemo.bla (under
\Doc\Chapter3). In this example, the respondent enters answers directly into
the computer for a confidential section on traffic offences. It is felt that the
respondent would not answer truthfully if he had to provide answers to the
interviewer. A wall will hide the answers from the interviewer once the section is
finished. In that way, the respondent can be assured that his answers will be kept
confidential from the interviewer. The strategic part of the RULES section of
keepdemo.bla is shown in the following example:

RULES
 ThankYou.KEEP
 RespondentIntro
 NEWPAGE
 IF ThankYou = EMPTY THEN
 Ticket
 SmallOffence
 MajorOffence

 ELSE
 Ticket.KEEP
 SmallOffence.KEEP
 MajorOffence.KEEP

 ENDIF
 ThankYou

The KEEP method is used two ways here. First, it is applied to the field ThankYou
at the top of the RULES section. In this way, the value of ThankYou is known to all
of the rest of the fields, even though it does not get a value until nearly the end of
the section. If ThankYou is empty, then the confidential questions Ticket,
SmallOffence, and MajorOffence are asked. Once ThankYou is answered, these
confidential questions get the KEEP method and can no longer be reviewed or
updated.

This method of using a wall can be important for blocks and is demonstrated in
the household roster section of Chapter 4.

Forcing a jump back to a previously unanswered question
The KEEP method can also be used to force a jump back to a previously
unanswered question. The following example is from jumpback.bla in
\Doc\Chapter3, and is illustrative of the method:

 Chapter 3: Data Model Basics

Developer's Guide 111

FIELDS
 StartHere "This is the beginning question." : TContinue
 JumpBackToHere "Since the field QuestionSwitch has answered, you have
 jumped back to here." : TContinue
 QuestionSwitch "Once you answer this question, you will be forced back
 to the field JumpBackToHere." : TContinue
. . .

RULES
 StartHere
 QuestionSwitch.KEEP
 IF QuestionSwitch <> EMPTY THEN
 JumpBackToHere
 ENDIF
 QuestionSwitch

The field QuestionSwitch appears near the top of the rules with the KEEP method
so that the succeeding IF condition knows the value of QuestionSwitch, even
though QuestionSwitch will not be answered until later. Once QuestionSwitch is
answered, the cursor will move backwards in the instrument and land on the field
JumpBackToHere.

For this to work, it is essential that the field JumpBackToHere does not have the
EMPTY attribute. When the field QuestionSwitch is answered, all the statements in
the RULES section are evaluated top to bottom. In this example, the DEP will find
that JumpBackToHere is now on the route and that it does not have the EMPTY
attribute, and thus must be answered. This forces the cursor to move backward.

Note that once the jump back is made, the field JumpBackToHere must be
answered before the interview can be completed. As always, you should leave the
interviewer a way to leave the field, for example, to allow a DONTKNOW or a
REFUSAL.

The data model jumpback.bla also illustrates using an edit statement to allow
an interviewer to jump back to a previous field. You would use this method if the
field to which you are jumping back had the EMPTY attribute.

! The data model jumpback.bla illustrates an important feature in Blaise.
All appropriate rules are always re-executed every time a new answer is
provided or an existing one is modified. Once the field QuestionSwitch
receives a value, the DEP knows that the field JumpBackToHere needs an
answer because the DEP re-evaluated all the rules in the section, top to
bottom.

Chapter 3: Data Model Basics

112 Blaise 4.5

Use of KEEP to aid in some variable text fills
The KEEP method can be applied to a field in the RULES section as many times as
you like. In the example data model filldemo.bla (in the \Doc\Chapter3
folder), KEEP is applied at the beginning of the RULES section to three fields.

DATAMODEL FillDemo "Data model to demonstrate the use of KEEP for some
 variable text fills."

FIELDS
 FirstName "First name = ^FirstName,
 Surname = ^SurName
 Age = ^Age
 @/@/What is your first name?" : STRING[30]
 SurName "First name = ^FirstName, Surname = ^Surname, Age = ^Age
 @/@/What is your surname?" : STRING[30]
 Age "First name = ^FirstName, Surname = ^Surname, Age = ^Age
 @/@/What is your age?" : 0..120
RULES
 FirstName.KEEP
 SurName.KEEP
 Age.KEEP
 FirstName
 SurName
 Age
ENDMODEL

This is done so that the following set of variable text fills

First name = ^FirstName, Surname = ^Surname, Age = ^Age

is known at all times for all three fields. In the DEP in this example, you can enter
FirstName, Surname, and Age and then move the cursor back to FirstName. Even
though FirstName is in the rules before Surname and Age, the values of Surname
and Age are displayed for the field FirstName. You can experiment and comment
out the KEEP statements in the RULES section and see how the variable text fills
are handled without them.

This method of showing fills is important in some rostering situations. This is
demonstrated in Chapter 4 where several methods of collecting household data
are explained.

 Chapter 3: Data Model Basics

Developer's Guide 113

! It is possible to apply ASK, SHOW, and KEEP to blocks. If you apply SHOW
or KEEP to a block, then these block-level methods cannot be overridden
with field-level methods in the block. If you apply ASK to the block, then
SHOW and KEEP at the field level will override the block-level ASK method.

! The overuse of KEEP on a block is discouraged. If there is a KEEP on a
block, the rules of the block will be processed and the blocks parameters
will be administered each time the rules are checked. This may lead to
unintended effects if a block is both KEEP and ASK at the same time, as its
rules will be processed twice.

Additionally, a KEEP can lead to the unintended effect of leaving
‘orphaned’ data in the database. This can occur when an interviewer is lead
down a route and then backs up to take an alternative route. Any fields with
a KEEP on the first route will not be emptied when the form is saved.

3.6.3 Conditional rules
Some fields, edit checks, and computations should be processed only in certain
circumstances. For example, if you use an interviewing program, certain
questions may apply only to certain situations. You do not want to bother
respondents with irrelevant questions or skip relevant ones. You need some kind
of mechanism to tell the system to ask fields or invoke edit checks or
computations only under certain conditions. That mechanism is the IF condition.

IF statement
A conditional rule is described with an IF statement:

RULES
 Working
 IF Working = Yes THEN
 Descrip
 Distance
 Transport
 ENDIF
 Income

This example only contains route instructions. First, the field Working is
processed. Then there is a condition specifying that all instructions between THEN
and ENDIF (in this case, the fields Descrip, Distance, and Transport) have to be
processed only if the value of the field Working is Yes. For any other value of
Working, these fields will be skipped.

Chapter 3: Data Model Basics

114 Blaise 4.5

Finally, the field Income will be processed. This field is not included in the part
between THEN and ENDIF, and therefore it will always be processed, whatever the
result of the condition.

You can also use a conditional rule for checking:

RULES
 Name
 Town
 Gender
 MarStat
 Age
 IF Age < 15 THEN
 MarStat = NevMarr
 ENDIF
 Activity

The check MarStat = NevMarr is only carried out if the field Age contains a
value less than 15.

You can have a mixture of route, check, and compute instructions between THEN
and ENDIF (check and compute instructions are described in detail in the
following sections):

RULES
 Working
 IF Working = Yes THEN
 Descrip
 Distance
 Time
 Speed := Distance / Time (Speed > 0.05) AND (Speed < 2.00)
 Transport
 ENDIF
 Income

ELSE instruction
Conditional rules can have a more complex structure than those described above.
For example, you can use ELSE to specify instructions that will be carried out if
the condition is not satisfied:

 Chapter 3: Data Model Basics

Developer's Guide 115

RULES
 Working
 IF Working = Yes THEN
 Descrip Distance Time Transport
 Speed := Distance / Time (Speed > 0.05) AND (Speed < 2.00)
 IF Distance > 10 THEN
 Commuter := Yes ELSE Commuter := NO
 ENDIF
 ELSE
 LookWork
 IF LookWork = Yes THEN
 Age < 65
 ENDIF
 Commuter := No
 ENDIF
 Income

If the condition is satisfied, the instructions between THEN and ELSE will be
carried out. If the condition is not satisfied (Working has the value No), the
instructions between ELSE and ENDIF will be carried out. In both cases, a
computation is carried out. The field Commuter will always be assigned a value.
The field Income will always be asked.

In fact, the following is an example of nested conditional rules. There are
conditional rules within conditional rules. If Working has the value Yes, then the
system will encounter the conditional rule IF DISTANCE > 10 THEN, and if Working
has the value No, the system will encounter the conditional rules IF LOOKWORK =
YES THEN. Blaise allows you to build very complex but also very efficient rule
structures.

ELSEIF instruction
In this example, we have an example of the ELSEIF construction. Blaise will
evaluate each ELSEIF condition until it finds one that is satisfied. It will process
what is contained in that particular part of the ELSEIF construction and then jump
to the ENDIF. It will not evaluate succeeding ELSEIF conditions of that particular
construction. This makes evaluation very efficient, especially where there are
many ELSEIFs together.

Chapter 3: Data Model Basics

116 Blaise 4.5

RULES
 Activity
 IF Activity = School THEN
 SchoolType
 ELSEIF Activity = Working THEN
 Descrip
 Distance
 Travel
 ELSEIF Activity = HousKeep THEN
 LookChildren
 CommunWork
 IF CommunWork = Yes THEN
 Hours
 ENDIF
 ELSEIF Activity = Other THEN
 OthActivity
 ENDIF
 Income

! It is good programming practice to pay attention to the layout of the
programming code. Standard indentation is particularly important for
writing nested structures. Using indentation makes it easier to read and
interpret the text and reduces the risk of errors. Particularly, related IFs,
ELSEIFs, ELSEs, and ENDIFs should all be lined up in the same column of the
text editor. If this is not done, it might be extremely difficult for someone
else to understand the code. When IFs and ENDIFs are widely separated by
many statements, it is good programming practice to use remarks at the
ENDIF to state which IF condition it goes with, as shown in the following
example:

IF Age > 15 THEN
 . . .
 {Many statements}
 . . .
ENDIF {Age > 15}

Specify other choice
A special type of closed question appears often on paper questionnaire forms. It
contains a list of options and an alternative if none of the items apply. An
example:

 Chapter 3: Data Model Basics

Developer's Guide 117

What is your main activity?
 Going to school 1
 Working in a paid job 2
 Housekeeping 3
 Something else. Please specify:

To handle this in Blaise you introduce two fields: one field with four value items
and another field designed to store the natural-language specification in case the
first field has item 4 as its value. An example:

FIELDS
 Activity "What is your main activity?" :
 (School "Going to school",
 Working "Working in paid job",
 HousKeep "Housekeeping",
 Other "Something else")
 OthActiv "Please specify that other activity" : STRING[80]
RULES
 Activity
 IF Activity = Other THEN
 OthActiv
 ENDIF

You can declare placeholders in the enumeration for additional choices. This is
described in Section 3.2.2.

Field name listed twice
A field name may appear more than once in a conditional rule structure.
However, fields that are displayed on the screen (due to the application of the ASK
or SHOW method) must always appear in the same order in different branches of
conditional rules. They must appear in such a way that they can only be processed
once, regardless which route is followed.

The reason for this restriction is a practical one. Screen displays in the DEP are
built in advance to ensure a good program performance. This implies that the
display order has to be independent of the conditions met in the field. There is no
restriction on the use and frequency of the KEEP method and of assignments,
because they have no influence on the display. An example follows:

Chapter 3: Data Model Basics

118 Blaise 4.5

RULES
 Activity
 IF Activity = School THEN
 SchoolType
 Distance
 Travel
 ELSEIF Activity = Working THEN
 Descrip
 Distance
 Travel
 Income
 ENDIF

There are three possible routes through these fields. If Activity has neither the
value School nor Working, no other field is processed. If Activity has the value
School, the fields SchoolType, Distance, and Travel are processed. If Activity has
the value Working, the fields Descrip, Distance, Travel, and Income are
processed. The two fields Distance and Travel appear twice in the source code,
but once on the screen: once in the School branch of the route and once in the
Working part of the route. The order of the fields is the same in both branches.
Remember, all fields are asked unless the SHOW or KEEP method is used.

Fields that are used more than once do not need to use the same method in every
branch. For example, it is allowed to ASK a field in one branch and to SHOW it in
the other branch. Take a look at the following example:

FIELDS
 HomeTown "Where do you live?" : STRING[20]
 SameTown "Do you work in ^HomeTown?" : (Yes, No)
 WorkTown "Where do you work?" : STRING[20]
RULES
 HomeTown
 SameTown
 IF SameTown = Yes THEN
 WorkTown := HomeTown
 WorkTown.SHOW
 ELSE
 WorkTown.ASK
 ENDIF

The question SameTown determines whether respondents work in their hometown. If
this is the case, respondents will not be asked to specify the town in which they work.
Instead, the corresponding field WorkTown is computed by giving it the same value as
the field HomeTown. If respondents work in a different town, they will be asked to give
the name of that town.

When you use different methods for the same field in different branches of a
conditional rule, you have to keep in mind the possible effects on your data file.

 Chapter 3: Data Model Basics

Developer's Guide 119

Two possible conditional rules are displayed in the following example:

Gender
IF Gender = Female THEN
 Children
ENDIF

and

Gender
IF Gender = Female THEN
 Children
ELSE
 Children := 0
ENDIF

In both examples, the field Gender will be filled. In the first one, the field
Children will always be empty for males. The combination (Male, 0) is not
possible. For females, both fields Gender and Children will always be filled.

In the second example, the effects for the conditional rule are different. Both of
the fields Gender and Children will always be filled. For males, the field
Children is set to zero.

Error text in IF conditions
If a check is included in a conditional rule, the error message will contain both the
condition of the IF instruction and the check specification. If a check is
unsuccessful, an error occurs and a message appears on your screen. For the
check:

IF Age < 15 THEN
 MarStat = NevMarr
ENDIF

The message that will appear on your screen is IF (Age < 15) THEN (MarStat =
NevMarr).

This message can be improved by adding text. For example, the check:

IF Age < 15 "If you are younger than 15" THEN
 MarStat = NevMarr "you cannot be married!"
ENDIF

Chapter 3: Data Model Basics

120 Blaise 4.5

produces the message If you are younger than 15 you cannot be married! The IFs
and THENs are not displayed. If you want them, you have to include them in the
text.

INVOLVING function
Once again we would like to stress the rule that at least one field or auxfield must
appear in a check. For a conditional check this means that there should be at least
one field in the condition after IF or in the check itself. If you do not have fields in
your check, you can force them to be involved by using the INVOLVING function.
Consider the following:

RULES
 Working
 IF Working = Yes THEN
 Distance
 Time
 Speed := Distance / Time
 Speed > 0.05 AND Speed < 2.00
 ENDIF

Speed is a local variable, so the error cannot be attached to a field. To involve the
fields Distance and Time in the error message, you can use the instruction
INVOLVING. This can be achieved with the following:

RULES
 Working
 IF Working = Yes THEN
 Distance
 Time
 Speed := Distance / Time
 (Speed > 0.05) AND (Speed < 2.00)
 INVOLVING(Distance, Time)
 ENDIF

Here the fields Distance and Time will be attached to the check.

3.6.4 Edit checks
An edit check describes a relationship between a number of fields, auxfields,
locals, or constants. It states what the logical situation should be. If the values of
the fields involved do not satisfy the statement, an error is invoked.

Hard errors use the key word CHECK. Soft errors use the key word SIGNAL.
CHECK is the default.

 Chapter 3: Data Model Basics

Developer's Guide 121

What happens after an error depends on the application at hand. The most
common interviewing mode will immediately produce an error message on the
screen. The interviewer cannot continue to the next field until the problem has
been resolved. In a CHECK, this is done by changing one or more values of the
fields involved.

In a signal either the interviewer can change the value of a field or suppress the
edit. There are four modes of operation in Blaise and the exact error reporting
behaviour depends on the mode. In the most common data editing mode, errors
are reported by means of icons displayed on the screen. The data editor can view
error messages if necessary but often will not need to do so. (See Chapter 6 for
more information on modes of behaviour in the DEP.)

One of the properties of Blaise is the fact that edits are very effectively inserted
into the interview. When an edit is invoked, a dialog pops up and the interviewer
is presented with an error message and a list of fields involved. The interviewer
can place the cursor on the offending field, and immediately jump to the field to
correct it. The interviewer then presses the End key, and is placed at the
appropriate spot to continue the interview. In this way, a problem can be cleared
up immediately, reducing the need for post-collection cleanup. In a large data
model there can be literally hundreds or thousands of uniquely defined edit
checks.

Suggestions for defining edit checks
Even though Blaise is good at the mechanics of error correction in an interview,
this does not help if the interviewer and the respondent cannot understand the edit
statement. Defining edit checks that are appropriate for the interview is an art.
Here is what you can do to ensure that edits are appropriate:

• Resist efforts to write too many or too complicated edits.

• Determine which edits are appropriate for interviewing. Some edits require a
great deal of subject matter knowledge and not all of the interviewers will
have that knowledge.

• It is possible to make an edit soft in an interview but hard in interactive
editing. This should rarely be done but sometimes is appropriate.

• Carefully choose which fields are available for correction for each edit check.

• Use field names or field descriptions that will be easily understood when
presented in a list of choices to jump to in an edit message.

• Design a standard way of presenting edit message text to the interviewer. Do
this in consultation with interviewers.

Chapter 3: Data Model Basics

122 Blaise 4.5

• Train the interviewer to immediately recognise whether an edit check is hard
or soft. Additionally you can use cue words like [HARD] or [SOFT] in the edit
message.

• Don’t put too many signals (soft edits) in the interview. One reason to
conduct a survey is to measure variability, not second-guess it.

• Aim edit checks at specific data collection problems. For example,
respondents may accidentally respond in euros instead of thousands of euros.

A point to keep in mind is that the checks have to be consistent. If you define
conflicting checks, the system will keep reporting hard errors whatever the values
are, and it will be impossible for the interviewer to continue.

Consider putting the following information in an edit:

• An edit number

• A succinct statement

• Computed values

Consider assigning every check and every signal a unique number. This serves as
an edit identifier. If there are problems with the edit, the user can provide the edit
number and you can easily locate the edit in the source code.

When writing the error message, you should write a concise description of the
problem, followed by a specific text for the interviewer to read. Also, use text
enhancements and line feeds to make the message readable.

And lastly, use fills to display calculated values for clarification. For example, to
display a wage rate (dollars per hour, when Salary and HoursWorked are the
fields that have been collected.

Edit example
The following is an example of an edit statement:

SIGNAL
 (IHEAge <= 69) INVOLVING(DateOfBirth)
 “@E[WARNING EIHE16b-01] AGE OF HOUSEHOLD MEMBER, ^IHEAge, IS
 GREATER THAN 69.
 @/@/ I just want to confirm your age. We have calculated
 your age as ^IHEAge. Is this correct?”
CHECK

 Chapter 3: Data Model Basics

Developer's Guide 123

First, DateOfBirth is asked and then IHEAge is calculated. Then a SIGNAL verifies
whether the age of the respondent is less then 70.

WARNING indicated that the edit may be suppressed. EIHE16b-01 is this edits
identifier. The INVOLVING statement ensures that the DateOfBirth can be
changed. AGE OF HOUSEHOLD MEMBER is the description of the problem,
while the fill string ^IHEAge displays the calculated value. The remaining text is
for the interviewer to read back to the respondent.

! Note that, by default, edits in Blaise are stated in terms of what is correct,
not what is wrong. In other words, if the edit is true then by-pass the edit
check or signal.

ERROR function
An alternative statement of an edit is with the ERROR function. You state what is
wrong in an IF condition with the key word ERROR between the IF and ENDIF. For
example:

IF (Distance/Time<= 0.05) OR (Distance/Time >= 20.0) THEN
 ERROR
ENDIF

The default edit statement convention is preferred by most Blaise users in keeping
with the rest of the Blaise language, which states conditions in terms of what is
supposed to happen. The default convention is more succinct and requires less
code.

An edit check for numeric fields consists of arithmetical expressions that are
compared by means of logical operators.

Arithmetical expression
An arithmetical expression is any expression that is composed of field names,
auxfield names, local variable names, constants, and the arithmetical operators +
(addition), — (subtraction), * (multiplication), / (division), DIV (integer division),
MOD (remainder after integer division), and ** (power). Functions may be used to
simplify computations and edit checks.

Chapter 3: Data Model Basics

124 Blaise 4.5

Income - Expenditures

MonthIncome * 12

Distance / TimeSpent

SQRT(Length ** 2 + Width ** 2) {SQRT is a function.}

The names represent fields, auxfields, or locals. Enumerated type fields and set
fields cannot be used in an arithmetical expression, unless they are used in a
function that produces a numerical result.

String expressions
String fields may only be used in string expressions. You may only use the +
(concatenation operator) and string functions with string expressions. Date and
time fields may only be used in the special functions for these types. See the
Table of Functions in the Reference Manual for a list of string functions.

Simple edits
A simple edit check is obtained by comparing two arithmetical expressions using
one of the logical operators < (less than), <= (less than or equal to), > (greater
than), >= (greater than or equal to), <> (unequal), = (equal), and IN (contained in).

Age > 15

Gender <> DONTKNOW

(Income - Expenditures) >= 0

Activity IN [Working, School]

Walking IN Transport

The first check states that Age should have a value greater than 15. The second
condition is only true if the value of Gender is not equal to DONTKNOW. The third
condition requires that the value of Income not be smaller than that of
Expenditures. The fourth condition is only relevant for enumerated type fields. It
states that the value of activity must be equal to one of the values in the set at the
right-hand side. The type of the last condition is only used for set fields. It
requires the value on the left side to be among the set of values recorded for the
field Transport.

You can build more complex conditions with the logical operators AND, OR, and
NOT. You can combine these operators to any depth.

 Chapter 3: Data Model Basics

Developer's Guide 125

Here are a few examples:

(Age > 18) AND (Age < 65)

(Job = Yes) OR (Job = No AND Looking = Yes)

NOT (Walking IN Transport)

(Value / Volume > 90) AND (Value / Volume < 110)

Rules of precedence
Conditions are evaluated according to the following rules of precedence:

Figure 3-2 Precedence of operators
Precedence Operators Type

1 (highest) ** Binary

2 +, -, NOT Unary

3 *, /, DIV, MOD Binary

4 +, - Binary

5 <, <=, >, >=, =, <>, IN Binary

6 AND Binary

7 (lowest) OR Binary

Unary operators take one operand, such as -X, whereas binary operators take two
operands, such as X-Y. Operators with a higher precedence are evaluated before
operators with a lower precedence. Use parentheses to enforce a different
evaluation order or to improve readability.

Placement of edit checks in data model
Edit checks can be included anywhere in the RULES section, but they are only
executed after all fields and variables involved have been processed. It is good
practice to include the check at a point after the last field or variable has received
a value. This is to ensure that the timing of the edit check is correct.

Chapter 3: Data Model Basics

126 Blaise 4.5

The following is an example of a part of a data model with a check:

FIELDS
 Distance "How far is it to your work (in km)?" : 0..300
 Time "How long does that take you (in minutes)?" : 0..200
RULES
 Distance
 Time
 Distance / Time < 2.00

The DEP will generate an error message if the edit is violated. Here, the text of
the error message is a copy of the check instruction. Particularly complex checks
will be very hard to understand by the user. To make the error message more
readable and instructive, it is possible to attach texts to both IF conditions and edit
statements. The program will display the relevant text as the error message. In the
following example, the check the error message will be identical to the check
specification:

Distance / Time < 2.00

But for the check in the next example, the error message will be 'You cannot
travel that fast!'

Distance / Time < 2.00 "You cannot travel that fast!"

Variable error message
We already mentioned that you can include variable text fills in question text.
This is also possible in edit text. Take a look at the following data model:

FIELDS
 HomeTown "Where do you live?" : STRING[20]
 WorkTown "Where do you work?" : STRING[20]
 Distance
 "How far is it to your work (in kilometres)?" : 0..300
 Time "How long does that take you (in minutes)? : 0..200

RULES
 HomeTown
 WorkTown
 Distance
 Time
 Distance / Time < 2.00 "You cannot travel that fast from ^HomeTown to
 ^WorkTown!"

 Chapter 3: Data Model Basics

Developer's Guide 127

Suppose the field HomeTown contains the value ‘Arlington’ and the field
WorkTown contains the value ‘Rockville.’ If the ratio of Distance and Time
violates the condition, the resulting error message is 'You cannot travel that fast
from Arlington to Rockville!'

Criteria for use of checks
To be sure the error messages will be reported on the data entry screen, there are
some important rules concerning the use of checks:

• There must always be at least one field or auxfield involved in the check.

• One of the fields or auxfields involved should have the method ASK.

The reason for the first rule is that the DEP always attaches error messages to
fields or auxfields. If there are none involved in a check, an error message can
never be displayed on the screen.

The second rule is required to get rid of errors. That is only possible if the user is
able to land on and change the value of fields or auxfields.

INVOLVING function
You can attach the special function INVOLVING to an edit check. This function
has a variable number of parameters. Each parameter must be the name of a field
or auxfield. All fields you specify this way are considered to be part of the check,
and therefore error messages are attached to these fields if an error is detected.
The following example is an alternative version of the preceding check:

FIELDS
 Distance
 "How far is it to your work (in km)?" : 0..300
 Time
 "How long does that take you (minutes)?" : 0..200

LOCALS
 Speed: REAL

RULES
 Distance
 Time
 Speed := Distance / Time
 Speed > 0.05 AND Speed < 2.00
 INVOLVING(Distance, Time)
 "You cannot travel at that speed! "

Chapter 3: Data Model Basics

128 Blaise 4.5

The fields Distance and Time are part of the check. In case of an error, the system
will list them both as places to jump to.

Another reason to use the INVOLVING function is to explicitly order the fields in
the dialog box that pops up when an edit is invoked. Fields are listed in the Data
Entry Program error dialog in the reverse order they are mentioned in the
INVOLVING statement.

Robust edit writing
Each edit check, whether a check or a signal, has a place in the Blaise data set.
This is so Blaise can keep track of which edits are invoked and knows whether
the form is clean or not. If you add or delete edits, this will cause data file
incompatibility. In production this can be a problem. Even though you may think
you have the survey thoroughly specified, it happens very often that you need to
add or delete an edit. Chapter 7 explains how you can easily transfer data from an
old definition to a new one, but if the number of edit checks is changed, the edit
information will not be transferred. Among other ramifications, you may lose all
of your suppressions for signals and forms that were formerly declared clean may
now be considered suspect.

There are three ways to handle the addition or deletion of edits:

• Use the key word RESERVECHECK as described in the next bullet. This gives a
way to maintain the data set definition despite adding or deleting edits.

• To add an edit to a production instrument if a RESERVECHECK is not
available, use a procedure to state the edit. This can influence the cleanliness
status of the form, but edit checks in procedures are not stored in the data set.
Procedures are covered in Chapter 5.

• If you need to change the data set definition because edits have been added or
deleted, you can use a simple Manipula set-up to update the data definition.
You will, however, lose all suppressions. This is covered in Chapter 7.

Identifiable Edits
Blaise offers an easy way to gain access to the results of the edit checks and
signals defined in the rules of a data model. To make this possible each edit must
have an identifier. Blaise uses an enumerated field, defined in the FIELDS section,
as the placeholder for the result of the edit.

To identify such a field Blaise uses the so-called type EDITTYPE. The type
EDITTYPE is a predefined enumerated field with the following definition: Passed,

 Chapter 3: Data Model Basics

Developer's Guide 129

Hard, Soft, and Suppressed. You ‘link’ such an EDITTYPE field to an edit in the
RULES section by using the pipe-symbol. For example:

DATAMODEL EditTypeExample
FIELDS
 Number1, Number2: INTEGER[2]
 EditResult: EDITTYPE
 WhySuppress: STRING[50]
RULES
 Number1
 Number2
 SIGNAL
 EditResult | Number2>Number1 "Number2 should be greater

 than Number1"
 IF EditResult=Suppressed THEN
 WhySuppress
 ENDIF
ENDMODEL

In the example above, the result of the edit ‘Number2>Number1’ will be stored in
the field EditResult. If number2>number1 the value is Passed. If
number2<=number1 the value is Soft unless the soft error is suppressed by the
user. In the latter case, the value will become suppressed.

The term, so-called type, was used above because can define your own EDITTYPE.
Defining your own EDITTYPE will overrule the predefined EDITTYPE of Blaise.
This makes it possible to extend the type with new values. These new values can
be used from within the error dialog to indicate why an error is suppressed.
However, this feature is only available if your EDITTYPE has more than 4 values.

Chapter 3: Data Model Basics

130 Blaise 4.5

An example:

DATAMODEL EditTypeExample
TYPE
 EditType = (OK "Edit is Okay",
 HardError "Hard error",
 SoftError "Soft error",
 SuppressedDK (7) "Don’t know which to correct",
 SuppressedRF "Refused to solve edit",
 SuppressedOther “Other suppress reason")
FIELDS
 Number1, Number2: INTEGER[2]
 EditResult "Number2 should be greater than Number1": EditType
 WhySuppress: STRING[50]
RULES
 Number1
 Number2
 SIGNAL
 EditResult | Number2>Number1
 IF EditResult=SuppressedOther THEN
 WhySuppress
 ENDIF
ENDMODEL

Blaise assumes that the OK, HardError and SoftError correspond to the first
three values on the predefined EDITTYPE. In the example above you can indicate
in the error dialog why the error is suppressed (SuppressedDK, SuppressedRF or
SuppressedOther). Notice that the field text of the EditResult field in the example
is used in the error text of the edit in addition to the text defined with the edit
itself.

RESERVECHECK
Blaise offers a way to robustly add or delete edits through the RESERVECHECK.
The purpose of this is to reserve an edit for later usage or to replace an obsolete
edit. It can be considered a placeholder. Two or three RESERVECHECKs should be
placed in the RULES section of the data model and in some blocks. How many you
place in each block depends on how confident you are about the block. If it is a
well-used and tested block, then you don’t need a RESERVECHECK there. If it is a
new, untested section of a questionnaire, then you should place at least a few
RESERVECHECKs in it. For example:

RULES
 Edit1
 Edit2
 RESERVECHECK {is a placeholder}

 Chapter 3: Data Model Basics

Developer's Guide 131

To add an edit in production, delete or comment out the RESERVECHECK and
replace it with an edit:

RULES
 Edit1
 Edit2
 {RESERVECHECK} {was a placeholder}
 Edit3 {new edit check}

To delete an edit, comment out the edit and replace it with a RESERVECHECK:

RULES
 {Edit1} {obsolete edit}
 RESERVECHECK {new placeholder for Edit1}
 Edit2
 {RESERVECHECK} {was a placeholder}
 Edit3 {new edit check}

Make sure that you do not change the order of the edits.

For an example of edit checks see editrule.bla in \Doc\Chapter3 under the
Blaise system folder.

Toggling edit severity
On some occasions there may be a situation where it is wise to make an edit soft
in an interview and hard during post-collection data editing. To do this, you use
an IF-THEN condition to toggle the hardness of the edit. Make sure you reset the
toggle the way you want it after the construction. For example:

IF CADI THEN
 CHECK
ELSE
 SIGNAL
ENDIF

MinWage > 3.50

CHECK

Note that CHECK and SIGNAL may be included in the part between THEN and
ENDIF. This is the case in the example above. The switch to soft checking will
only occur when the CAPI reserved word is TRUE, but will not occur when the
CADI reserved word is TRUE. The Reference Manual provides more detail on the
use of the CAPI and CADI reserved words. To be sure the system always

Chapter 3: Data Model Basics

132 Blaise 4.5

continues in check mode after the minimum wage edit check, we included CHECK
after the edit.

3.6.5 Computations
Computations may be necessary to determine the proper route for processing the
fields, to carry out complex checks, or to derive the value of a field if the Data
Entry Program does not ask for a value. You can carry out computations
anywhere in the RULES section. The general scheme is as follows:

Name := Expression

Note the ':=' in the example above. Name = Expression would be interpreted as an
edit check that the field Name has the same value as the field Expression.

The expression must be of the same type as the field Name. A numeric field
expects a numeric expression and a string field expects a string expression. If the
expression yields a value outside the valid domain of the field, the assignment
will not be carried out and the field or variable will keep its old value. Fields that
are computed need not be mentioned in route instructions. Blaise will apply the
method KEEP by default. Therefore, you may omit the text Speed.KEEP.

FIELDS
 Distance "How far is it to your work (in km)?" : 0..300
 Time "How long does that take you (minutes)?" : 0..200
 Speed "What is your average speed (km/hour)?" : 0.0..100.0

RULES
 Distance
 Time
 {Speed.KEEP}
 Speed := 60 * Distance / Time

Fields as expressions
There is a subtle difference between the following two statements:

A := B
A := (B)

The first statement is a straight field computation. The second statement is a field
computation of an expression. That is, the parentheses () make the right side of
the computation an expression. The impact of this is that statuses do not transfer

 Chapter 3: Data Model Basics

Developer's Guide 133

in the latter case. In the second expression, if there are statuses of DONTKNOW or
REFUSAL in the field B, then these statuses will not transfer to A.

When fields, defined as a block, are use in an assignment, only the values of the
block are assigned. Remarks that have been added, will not (as the default) be
copied. A toggle in the mode library allows you to specify if you want to copy the
remarks while assigning a field to another field in the rules of your data model.
The option can be set in the Check Behaviour section on the Advanced Toggles
tab of the mode library editor. This applies to simple fields and to block fields.
(See Chapter 6, Data Entry Program, the section on the mode library file.)

Assignment of statuses
Statuses are attached to each field and are known to you as DONTKNOW,
REFUSAL, and EMPTY. When you make a field assignment, statuses will transfer
from one field to another. However, it is possible to get imputation errors.
Consider:

{Situation 1}

FIELDS
 S1 : STRING[10], DK, RF
 S2 : STRING[20], DK, RF
RULES
 S1 := S2

{Situation 2}
FIELDS
 S1 : STRING[10]
 S2 : STRING[20] , DK, RF
RULES
 S1 := S2

In situation 1, all statuses will transfer from S2 to S1. However, in situation 2, if
S2 has either the REFUSAL or DONTKNOW status, an imputation error will occur.

Refer to the Reference Manual for full details on expressions and the use of
standard functions.

Chapter 3: Data Model Basics

134 Blaise 4.5

3.6.6 Looping through rules
Consider the following fields:

FIELDS
 HHSize "How many people live in this house?" : 0..10

 Person "What is your name?" : ARRAY [1..10] OF STRING[30], EMPTY

You need a special type of rule for handling arrays of fields. For that, Blaise
offers you the FOR loop. The general form of the FOR loop is:

FOR ControlVar := LowerBound TO UpperBound DO
 Rule1 Rule2 ... RuleN
ENDDO

There are four reserved words: FOR, TO, DO, and ENDDO. Use the name
ControlVar for a local that you use as a control variable in the FOR loop. It is
defined in the LOCALS section of the current block. Its type must be integer.
LowerBound and UpperBound must be either an integer constant or the name of
an integer field (or integer auxfield).

The minimum value in the definition of the field LowerBound may not be smaller
than the lower bound of the range of the processed arrays. The maximum value in
the definition of the field UpperBound may not be greater than the upper bound
of the range of the arrays.

The actual values of LowerBound and UpperBound indicate the initial and the
final value of the control variable. Rule1 Rule2 ... RuleN represent the rules that
are carried out for every value of the control variable.

To loop through an array for a dynamically determined upper bound you can use
the value of an integer field as the upper bound. The following shows an example
of such a construction:

RULES
 HHSize
 FOR I := 1 TO HHSize DO
 Person[I]
 ENDDO

The field HHSize contains the number of members in the household. The number
of times the rules between DO and ENDDO are executed is given by the value of

 Chapter 3: Data Model Basics

Developer's Guide 135

HHSize. For example, if HHSize has the value 2, only Person[1], and Person[2]
are processed. HHSize must have an appropriately defined integer range. In this
example that would be 1..10.

You may include any rule instruction between DO and ENDDO. For example, you
do not always know how many array elements are needed. You need a different
way to leave the array when the last element is reached. This can be done with an
IF condition within the FOR loop. For example:

FOR I := 1 TO 10 DO
 IF (Person[I-1] <> EMPTY) OR (I = 1) THEN
 Person[I]
 ENDIF
ENDDO

Here, Person[1] is always asked. If Person[1] is not EMPTY then Person[2] is
asked. To leave the array, the interviewer leaves one of the Person[I] fields
EMPTY. This example assumes that the field Person[I] is allowed to be EMPTY.

The following example contains a data model with a mixture of these instructions.
The data model records the total distance from home to work, and also the
distance covered by each means of transport. It checks whether the sum of the
individual distances is equal to the total distance. The sum of the individual
distances is computed in the local variable Total. This variable is set to zero
before the loop starts. You do not need to include the instruction Total := 0,
because Blaise automatically initialises local variables to zero values or empty
strings every time the checking mechanism is invoked. In each cycle through the
loop the specific individual distance is added to the value of Total.

Chapter 3: Data Model Basics

136 Blaise 4.5

DATAMODEL Commute5 "The National Commuter Survey"

LOCALS
 I, Total : INTEGER

FIELDS
 Name "What is your name?" : STRING[20]
 Town "In which town do you live?" : STRING[20]
 Job "Do you have a job?" : (Yes, No)
 TotalDist "What is the total distance to your work?" : 0..300
 NTransport "How many means of transportation do you use?" : 1..5
 Means "What is means of transportation no. ^I?": ARRAY[1..5] OF
 (Bus "Public bus, tram or metro",
 Train "Train",
 Car "Car or motorcycle",
 Bicycle "Bicycle",
 Walk "Walk",
 Other "Other means of transportation")

 Distance "What distance do you cover with means of transportation
 no. ^I?" : ARRAY[1..5] OF 0..300
RULES
 Name
 Town
 Job
 IF Job = Yes THEN
 TotalDist
 NTransport

 FOR I :=1 TO NTransport DO
 Means[I]
 Distance[I]
 IF Means[I]=Walk THEN
 Distance[I]<10
 ENDIF
 Total := Total + Distance[I]
 ENDDO
 IF Distance[NTransport] = RESPONSE THEN
 (TotalDist = Total)
 "The individual distances don’t add up to the total ^TotalDist"
 ENDIF
 ENDIF {Job = yes}

ENDMODEL

Please pay attention to the way the CHECK has been formulated, as in the
following:

IF Distance[NTransport] = RESPONSE THEN
 (TotalDist = Total)
 "The individual distances don’t add up to the total ^TotalDist"
ENDIF

 Chapter 3: Data Model Basics

Developer's Guide 137

Chapter 4 demonstrates how to array a block and how you can loop through the
block array. Use of arrayed blocks is almost always preferable to looping through
individual fields.

Without reference to the field Distance[NTransport], the check would have been
carried out straightaway after processing the field TotalDist. At that point, Total
would still have the value zero, so that this always would have led to an error
message. By including the reference to the field Distance[NTransport], you
instruct the system to carry out the check after the final field has been processed.

3.6.7 Layout elements in the RULES section
Four layout elements are available in the RULES section. They are DUMMY,
NEWPAGE, NEWCOLUMN, and NEWLINE. Layout elements affect the placement of
data entry cells in the FormPane (also known as the page). For example, DUMMY
places a space between two adjoining cells in the page. A NEWPAGE preceding
fields in the RULES section places succeeding cells on the next page. The
NEWCOLUMN places succeeding cells in the next column if space is available. If
space is not available, following cells are placed on the next page. NEWLINE is
used only where horizontal data entry is allowed, such as in a table. It places
succeeding entry cells on the next line of the horizontal display. The next
example is extracted from format.bla under \Doc\Chapter3 .

RULES
 FirstName
 SurName
 Town
 Gender
 NEWCOLUMN
 MarStat
 Age
 DUMMY(2)
 Children

The NEWCOLUMN places MarStat and succeeding fields in the second column of
the page. The DUMMY(2) places two dummy fields between Age and Children. If
DUMMY had been used, there would be only one dummy field between Age and
Children.

Chapter 3: Data Model Basics

138 Blaise 4.5

! Layout elements in the RULES section are overruled if a LAYOUT section
exists in the same block as the RULES section. If a LAYOUT section exists,
you can use DUMMY, NEWPAGE, NEWCOLUMN, and NEWLINE in the
LAYOUT section instead of in the RULES section. See Chapter 5 for
details.

3.6.8 Rules or no rules
It is possible to omit the RULES section completely from your specification. You
are allowed to have a data model with only a FIELDS section. In this case, Blaise
will assume that the fields must be processed in the order in which they are
defined in the FIELDS section. If you use Manipula to manipulate your data file,
you do not need a processing order, so it is very convenient not to have to specify
rules.

If there is no RULES section, Blaise will apply the ASK method to all fields. The
following sample shows a correct specification of a data model:

FIELDS
 Name "Name of the respondent" : STRING[20]
 Town "Town of residence" : STRING[20]
 Gender "Gender of respondent" : (Male, Female)
 Age "Age of respondent" : 0..120
 MarStat "Marital status of respondent" :
 (NevMarr "Never married",
 Married "Married",
 Divorced "Divorced",
 Widowed "Widowed")

ENDMODEL

Such a specification is useful if you want to document a file in which there are no
specific instructions for the order of the fields. Blaise assumes the order to be the
order in the FIELDS section.

3.6.9 Empty RULES section
It is also possible to have an empty RULES section. To do this, you still include the
reserved word RULES, but you do not specify any rules. For such a model, all
fields will be processed with the KEEP method. This is a consequence of the fact
that you need not specify all fields in the RULES section. Blaise automatically
KEEPs unmentioned fields. Thus, an empty RULES section will cause all fields to
be processed with KEEP.

 Chapter 3: Data Model Basics

Developer's Guide 139

3.7 SETTINGS Section

You can specify some properties of your data model in a SETTINGS section. There
are several types of settings. In this chapter we discuss two kinds of settings: key
fields and languages. The ATTRIBUTES setting is discussed above in the section on
Answer Attributes.

You must include the settings directly after the key word DATAMODEL and model
identification before any other section. The following is an example of a
SETTINGS section:

DATAMODEL Commute "The National Commuter Survey"

 PRIMARY
 Ident

 SECONDARY
 Manage.FormStatus

 ATTRIBUTES = REFUSAL, DONTKNOW

 LANGUAGES =
 ENG "English",
 NED "Nederlands"

In the above example, a field Ident is declared as a primary key. The field
FormStatus in the management block Manage is declared as a secondary key, all
fields in the data model have the attributes REFUSAL and DONTKNOW (unless
otherwise specified at individual fields), and the instrument can handle both
English and Dutch language texts. The Ident field could also be a block, in which
case all fields of the block would be part of the key.

3.7.1 Key fields
Blaise allows two kinds of key fields. A primary key defines a unique identifier.
A secondary key allows you to group forms together for more efficient
processing.

Primary key
For most surveys, it is necessary to uniquely identify forms. This is done with a
primary key. You can give any field the status of primary key. The primary key
may be an elementary field, a block field, or a group of fields. You can always
retrieve a form in the data set if you know its primary key value. To assign a field

Chapter 3: Data Model Basics

140 Blaise 4.5

the status of primary key, you specify the reserved word PRIMARY followed by
the name of the field , as follows:

DATAMODEL Commute "The National Commuter Survey"

 PRIMARY
 Ident
FIELDS
 Ident "Identification number" : 10000..20000
 Name "What is your name?" : STRING[20]
 Birth "What is your date of birth?" : DATETYPE
RULES
 Ident
 Name
 Birth
ENDMODEL

Here the primary key field Ident is one elementary field. Entry of another form
with the same number results in an error message. Consider the following:

DATAMODEL Commute "The National Commuter Survey"
 PRIMARY
 Region, Stratum
 FIELDS
 Region "Region of respondent." : 10..90
 Stratum "Stratum of respondent." : 1000..9000

Here the primary key is made up of two fields together.

Secondary keys
A secondary key is used to help retrieve and process groups of forms. You may
filter such groups and give them special treatment in subsequent processing. This
will speed up processing in many situations.

Two kinds of secondary keys are particularly valuable: to identify forms based on
content (for example, all female respondents) and to identify forms based on
administrative status (for example, complete versus incomplete interviews).

A secondary key can consist of a set of fields. You define such a key by
specifying the reserved word SECONDARY followed by the list of fields together
forming the secondary key. Commas must separate the items in this list. You can
define more than one secondary key.

 Chapter 3: Data Model Basics

Developer's Guide 141

DATAMODEL Commute6 "The National Commuter Survey"

 PRIMARY
 Ident

 SECONDARY
 Complete
 GenderByJob = Gender, Job

 FIELDS
 Ident "Identification number." : 10000..20000
 Name "What is your name?" : STRING[30]
 Town "In which town do you live?" : STRING[20]
 Gender "What is your gender?" : (Male, Female)
 Job "Do you have a job?" : (Yes, No)
 Complete "Completion status." : (Done, NotDone)

 RULES
 Ident.KEEP
 Name
 Town
 Gender
 Job
 IF Job <> EMPTY THEN
 Complete := Done
 ENDIF

ENDMODEL

The combination of Gender and Job is available as the secondary key
GenderByJob. For example, you can select all cases of females with a job.

You can give secondary keys a name. Names are particularly convenient for
combined keys.

SECONDARY
GenderByJob = Gender, Job

The secondary key GenderByJob is defined as a combination of Gender and Job.
The Data Entry Program will present GenderByJob as one of the possible
selection keys.

To use the trigram searching tool, add TRIGRAM to the definition of the secondary
key. (The lookup method of trigrams is covered in Chapter 5.)

SECONDARY
 Name (TRIGRAM)

Chapter 3: Data Model Basics

142 Blaise 4.5

3.7.2 Languages
A data model can be multilingual. This is important for interviewing multilingual
populations. To set up a data model to use different languages, you have to do
two things. First, you specify the languages you want to use in the SETTINGS
section. Second, you specify texts in these languages where necessary. For
example, if you use English, French, and Dutch, you would include the following
setting in the first part of your model:

LANGUAGES = ENG "English",
 FRA "Français",
 NED "Nederlands"

Each language specification consists of an identifier that is used by the system
and a text that is included in the menu of the interviewing or data editing
instrument.

Anywhere in your model where you can specify a text, you can now specify three
texts in the same order as in the definition. For a question text, that could be:

Name "What is your name?"
 "Quel est votre nom?"
 "Wat is uw naam?" : STRING[20]

If you specify fewer texts than the number of languages, the system will use the
text of the first language for the unspecified texts. If you specify:

Name "What is your name?"
 "Quel est votre nom?" : STRING[20]

and you switch to Dutch, you will get the English text. It is possible to overrule
the language order. You do that by putting the language identifier in front of the
text:

Name "What is your name?"
 NED "Wat is uw naam?" : STRING[20]

If you now switch to Dutch, you get Dutch, and if you switch to French, you get
English.

To see a demonstration of a multilingual instrument, prepare the data model
commute4.bla found in \Doc\Chapter3 under the Blaise system folder. At
this point you will have to switch languages through the menu system. A shortcut

 Chapter 3: Data Model Basics

Developer's Guide 143

key can be used to switch to the next language or to the previous language
without going through the menus (see Chapter 6).

Question-by-question interviewer aids
You can use the concept of languages in different ways. One requirement for
many surveys is the ability to have question-by-question interviewer aids attached
to each question. These are known as Q-by-Qs. You can create a Help language
that can be attached to a specific function key. This can be done as shown:

LANGUAGES = ENG "English",
 FRA "Français",
 HLP

Then in the FIELDS section:

Name "What is your name?"
 "Quel est votre nom?"
 "Any name will do.
 @/@/ N’importe quel nom est acceptable." : STRING [30]

Another way to implement question-by-question help is through the Windows®
WinHelp utility. This is covered in Chapter 5.

Spoken and Unspoken language
Blaise has long had a language capability that allows interviewers to switch
between spoken languages. The LANGUAGES declaration has also become a
place for declaring unspoken languages with other uses, as shown in the
following example:

LANGUAGES =
 ENG "English", {spoken}
 FRA "French", {spoken}
 HLP "Help" {unspoken}
 MML "Multimedia", {unspoken}
 MDL "Metadatalanguage" {unspoken}

The example above illustrates that there can be spoken and unspoken languages.
In the project Datamodel properties, you can designate which languages can be
turned off for the interviewers.

In this example, two spoken and three unspoken languages are declared. Each has
a 3-character identifier and a description between quotes. The identifiers such as
ENG or HLP have no meaning to Blaise, except that these identifiers may be used

Chapter 3: Data Model Basics

144 Blaise 4.5

later in the source code. In the developer's environment, it is possible to state
which languages are spoken and which are not. Spoken languages are available to
interviewers, while they never know about the unspoken ones. A function key can
be used to toggle between spoken languages during the interview.

The unspoken languages are used for other reasons, including multimedia
questions (sound, images, video), Microsoft® WinHelp links for question-by-
question help, or as a repository for additional field- or block-level metadata.

Blaise knows which language is in use. You can state IF conditions based on a
language. For example, a text fill might be computed one way for English and
another way for French.

3.7.3 TLANGUAGE, a provided language type
If multiple languages are defined in the settings paragraph of the data model, then
Blaise provides a type called TLANGUAGE. This can be used to switch languages
automatically between respondents in a multilingual household. For example, in a
field of a household roster, you can ask what the preferred language is for each
respondent. Then when arriving at the questions for the respondent with a
different language, the language will automatically switch. Switching can be
made dependent on the language abilities of the interviewer and whether a proxy
can answer the questions. The name TLANGUAGE should not appear in a TYPE
section or a type library. An example data model is ncs05.bla in
\Doc\Chapter5.

If you have the following language definition:

DATAMODEL NCS05 "National Commuter Survey, example 5."

LANGUAGES =
 ENG "English",
 FRA "Français",
 NED "Nederlands"

A field can be defined with the type TLANGUAGE:

FIELDS
 . . .
 Language "What is your language preference?" : TLanguage

The respondent could choose the appropriate language. Later in the data model,
the instruction SETLANGUAGE can be used to change languages. The

 Chapter 3: Data Model Basics

Developer's Guide 145

SETLANGUAGE instruction can be hard coded or it can be set by reference to an
elementary field:

SETLANGUAGE(NED)
SETLANGUAGE(Language)

You can also reference an element in an array block. This is most valuable when
dealing with multi-level rostering, as follows:

SETLANGUAGE(Respondent[n].Language)

In this situation Blaise will know which respondent to refer to according to the
instructions you have programmed in the rules.

Switching languages in the interview
The interviewer can always switch languages by menu (or by hot key if provided
for by the developer). Alternatively, the use of the type TLANGUAGE does the
switching automatically in appropriate developer-defined situations. You should
make sure that the automatic language switching described here and the language
switching done through the menu do not conflict. For example, if the automatic
language switching with SETLANGUAGE is done without condition and the
interviewer switches languages through the menu, then the next time the checking
mechanism is invoked the menu choice may be overridden because
SETLANGUAGE was invoked again in the rules. You can avoid this confusion by
embedding the SETLANGUAGE command in appropriate conditions.

Consistency between the type library and language setting
The languages used in the type library should be consistent with the language
settings at the start of the data model. If your data model uses ENG and FRA, and
your library uses ESP and NED, the data model will use Spanish for English and
Dutch for French for the answer possibilities that come from the type library. The
developer should ensure the necessary consistency.

Testing for the current language
You can test for the current language with the key word ACTIVELANGUAGE. For
example:

IF ACTIVELANGUAGE = NED THEN

Chapter 3: Data Model Basics

146 Blaise 4.5

You might use the following example to determine which part of an external file
to access or to properly construct some phrases, which are used as fills in
language text:

 IF ACTIVELANGUAGE = ENG THEN
 Task := 'wash your hands'
 ELSEIF ACTIVELANGUAGE = NED THEN
 Task := 'uw handen gewassen'
 ENDIF

where Task may be a fill in a question text:

FIELDS
 HowOften "How often did you ^Task?"
 "Hoe vaak hebt u ^Task?" : 0..50

3.8 Functions

Blaise offers many functions that can greatly reduce the amount of programming
you have to do. A function takes a field, auxfield, local, constant, or expression as
an argument and returns an appropriate result. You can find a table of all
available functions in the Reference Manual. A few representative function
statements are given:

ABS(Difference) {numeric function, absolute value}

ROUND(Total) {numeric function, round to integer}

STR(Expenditure) {numeric function, number to string}

LEN(AComputedString) {string function, length of string}

SYSTIME {time function, system time}

SYSDATE {date function, system date}

An example data model that illustrates date and time functions is timedate.bla
found in \Doc\Chapter3 under the Blaise system folder.

 Chapter 3: Data Model Basics

Developer's Guide 147

Handling of errors generated by functions
There are circumstances in which evaluating a function produces an error. In such
cases Blaise assigns special predefined values to keep things running:

• Logarithms of 0 and of negative numbers are set to 0.

• Square roots of negative numbers are set to 0.

• Squares of very large numbers are set to the maximum possible number.

• Powers with very large exponents are set to the maximum possible number.

• Powers with very large negative exponents are set to 0.

Procedures and Dynamic Link Libraries (DLLs)
Blaise functions can handle most tasks. But you may occasionally need to
program procedures within Blaise or external procedures in Dynamic Link
Libraries (DLLs). These topics are covered in Chapter 5.

Functions and methods
In the Blaise documentation you will often see references to functions and
methods. A method is applied to an entity, such as a field, with the dot notation.
We have already discussed the ASK, SHOW, and KEEP methods that are applied to
fields. Technically, methods are a kind of function, which is applied to an object
through the dot notation.

There are a few places where you can choose either notation depending on the
type of the argument. This is especially true of a few date and time functions.

3.9 Data File Compatibility

Blaise keeps a very close eye on whether the current data description is
compatible with the current data set. If it is not and you try to invoke the DEP,
you get a message stating that the data files are incompatible. This protects users
from unintended consequences when changes are made to the metadata
specification of the data model.

Even small changes in the metadata specification can cause data file
incompatibility. You can handle incompatible data files in two ways. You can
delete the data set and start over, but this is practical only early on in

Chapter 3: Data Model Basics

148 Blaise 4.5

development. You can also update the data set, which could be used while you
are in development or during production.

3.9.1 Causes of data file incompatibility
The following is a list of ways the metadata definition can change. Many things
make up the metadata definition and these must all be kept in mind:

• Change the number of fields.

• Change the order of fields in the FIELDS section.

• Change the valid range of even one field.

• Change the number of choices in an enumerated type.

• Change the number of edits (CHECKS or SIGNALS).

• Change the attributes of even one field.

• Change the primary key definition.

• Change the secondary key definition.

The following is a list of things you can change that will not affect the data
definition:

• Change the name of a field.

• Change the name of an item in an enumerated type.

• Add or delete auxfields.

• Add or delete locals.

• Add or delete computations.

• Add or delete Blaise or alien procedures.

• Change an external file.

• Add, delete, or change text.

• Change an IF-THEN condition.

• Change a CHECK to a SIGNAL or vice versa.

• Modify a CHECK or SIGNAL as long as you do not add or delete one.

• Change a RESERVECHECK to a CHECK or a SIGNAL, or a CHECK or SIGNAL to
RESERVECHECK.

 Chapter 3: Data Model Basics

Developer's Guide 149

If you are in production and you make changes to the instrument, you need to test
the new instrument against the old data definition. Do this even if you do not
think you have changed the metadata. The metadata definition can work very
subtly at times. It is much easier to perform a one-minute test for compatibility
than to hastily provide a fix on several hundred laptop computers when
interviewers report problems. If the data definition has changed, you must provide
a way for users to use the new instrument with the old data. This is covered in the
following text and in Chapter 7.

Early development only

The first way of handling data set incompatibility is for developers in the Control
Centre and is used only in the early development of an instrument. Choose
Database Data File Management Delete from the menu (or Ctrl + D). A
dialog box appears with a list of data files to erase. When you choose a data file, a
prompt will be given to make sure you really mean to erase the file. If you accept,
then the data files are erased. The next time you start the DEP, you will be
prompted to create a new data set. Use this option only when developing. There is
no elegant way to recover the data after erasing.

3.9.2 Production or development
When you are well along in the development process, data models can be very
large and deleting data sets and starting over again to test the instruments can be
time consuming. If you are in production, this method is absolutely inappropriate.

In these situations, you can handle data incompatibility by using Manipula. At
this point we will cover a developer’s strategy that makes use of a simple
Manipula set-up. You do not have to understand anything about Manipula at this
point, though you should not have any problem understanding the following set-
up. The Manipula system is fully documented in Chapters 7 and 8.

Suppose you have an application commute2.bla in a working folder. You create
a new folder under that called OLD. When you have created an instrument, have
entered data, and are about to make a change to the metadata of the instrument,
copy all instrument and data files to the directory OLD. This can be done easily by
copying *.b* to OLD. Then invoke the Manipula set-up. It will move data from the
old definition to the new. Since Blaise is based on a metadata approach, it will
know field by field how to move data from the old data model to the new. It does
this by matching field names. This is very powerful, especially when you insert
questions in the middle of the instrument. Manipula will still be able to place data
in the appropriate places in the new data model. This Manipula set-up would be:

Chapter 3: Data Model Basics

150 Blaise 4.5

USES
 CommuteOld ‘Old\Commute2’
 CommuteNew ‘Commute2’

INPUTFILE
 InFile : CommuteOld (‘Old\Commute2’, BLAISE)
 Outfile : CommuteNew (‘Commute2’, BLAISE)

MANIPULATE
 OutFile.WRITE

You create this file in the data editor of the Control Centre or through the
Manipula Wizard. When you save the file, give it the extension .man. Perform a
syntax check (prepare command) with F9 and run it with Ctrl-F9. This simple
program will read data from the old to the new database no matter how complex
the data models involved.

3.10 Good Programming Practices

The following is a list of the good programming practices mentioned in this
chapter:

• Use indentation conventions when nesting IFs and ENDIFs.

• Make sure the IFs and ENDIFs line up. If some programmers do not follow this
convention, then you will have a maintenance problem.

• Use comment braces {} to document your code throughout the specification.

• Use comment braces {} after ENDIFs that are widely separated from their IF
statements so you know to which IF statement they belong.

• Place edit checks (checks and signals) among the routing of the fields in the
RULES section. This will ensure that the checks will be invoked when you
want them to be.

• Mix computations with the fields in the RULES section for the same reason
you mix the checks and signals with the fields.

• Make sure a field or auxfield is part of the edit check statement. If this does
not happen naturally, use the INVOLVING function.

• Re-declare a check after IF constructs where either a check or a signal may be
invoked according to the situation found during the interview. This is so you
are sure what severity the following edit checks will have:

 Chapter 3: Data Model Basics

Developer's Guide 151

• Give every check or signal a unique number. If there are problems in the
field, the user can tell you which edit is wrong and you can easily find it to
change it.

• Place RESERVECHECKs at frequent places in the RULES section to preserve
robustness of data set definition.

• Type reserved words in capitals.

• Use very readable field names.

• For types in a type library or a TYPE section, use the convention that the type
name starts with a capital T as in TYesNo. Thus you will always know this is
a type.

• If a type is used in two or more places in one questionnaire, place the type in
a TYPE section of that data model.

• If a type is used in two or more surveys, place the type in the type library.

• Always declare locals at the lowest level possible to make blocks independent
and for performance reasons.

• Create and enforce a list of formatting standards for text displays in fields and
edit checks (CHECKS and SIGNALS). These will include font, font size, colour
coding, line spacing, and cue words for the interviewer and data editor.

3.11 Example Data Models

Following is a list of example data models and other files found in
\Doc\Chapter3 under the Blaise system folder. See the read.me file in this
directory for any last minute changes. These data models illustrate the points
made in this chapter. You can easily prepare and run them.

Chapter 3: Data Model Basics

152 Blaise 4.5

Figure 3-3: Example data models for Chapter 3
File Name Description

commute1.bla Basic data model, no blocks.

commute2.bla Basic data model, two blocks.

commute3.bla Basic hierarchical data model.

commute4.bla Multilingual data model.

commute5.bla FOR-DO loops.

commute6.bla Primary and secondary keys.

timedate.bla Time and date functions and methods.

types.bla TYPE section and type library.

opentype.bla An open-type field.

statuses.bla REFUSAL, DONTKNOW, and EMPTY statuses
and their converses.

format.bla Text and FormPane formatting.

editrule.bla CHECKS and SIGNALS.

showkeep.bla Field METHODS.

ourtypes.lib Type library (only 1 entry).

keepdemo.bla Using KEEP to protect fields from review or update
in confidential situations.

jumpback.bla Enforced backward jumping.

filldemo.bla Use of KEEP to enable a certain kind of variable
text fill.

excroute.bla Fields routed twice in exclusive branches of IF
statement.

testcomp.bla Data model where an imputation error is possible.

setcomp.bla Showing computations, fills, and processing of SET
fields.

Developer's Guide 153

4 Blocks and Tables

Blocks are a fundamental component of large or complex data models. They have
many uses:

• Blocks add structure to the data model for clarity. It is easy to view blocks in
the text editor. You can get overviews of the block structure at any level in
the Structure Browser or Database Browser, or on paper via the metadata
program Cameleon.

• Blocks form the basis for hierarchical (multi-level rostering) or relational
instruments.

• Blocks are a type definition that can be reused. That is, blocks allow you to
repeat groups of fields and their rules with just a few words. Thus a block can
be used, and should often be used, as a kind of macro or subroutine.

• Blocks are the basis of selective rule processing. This allows you to have
huge and complex data models that always run well while always enforcing
all applicable rules.

• Blocks can be designated parallel, which allows you to break the normal
interviewing sequence. With this feature you can implement concurrent
interviewing, appointment and nonresponse blocks, or other kinds of blocks
which should be available outside of the normal sequence of processing.

• Blocks are a logical unit for programming and testing. You can assign block
names and tasks before programming and validate a list of blocks as they are
completed.

• Blocks can be used as the basis for standardisation between surveys. You can
include the same block of code in different instruments and use parameters to
customise it.

• Programming code for blocks can be stored in a file separate from the main
source file and brought into the data model file with the INCLUDE file
statement. This allows many people to work on one data model at once
without conflict.

• Blocks can be compiled into mini-data models for development and testing. If
such blocks use parameters for reference to entities of other blocks, they can
be plugged directly into larger operational data models. The use of these
small data models has proved to be a powerful development and testing
methodology.

Chapter 4: Blocks and Tables

154 Blaise 4.5

• Blocks are the unit of data storage in the Blaise® data set. If no fields in the
block are answered, then the block takes up no space in the data set.

• Blocks may form the basis of data readout. You can read out part of a data
model for one client and another part for a different client with just a few
words in a Manipula set-up.

• Blocks may form the basis of metadata management via the metadata
program Cameleon. For example, you could give a SAS data set-up for one
section of the questionnaire to one client and one for SPSS to another client.

• Blocks form the basis of a relational readout, which can be used by relational
database systems.

• Blocks may form the basis of Manipula processing. This eliminates the need
to read in the whole of every (large) form into memory when you need to
read information from only a few blocks. This will speed up file processing.

Tables are a kind of block and are valuable because:

• Tables mimic paper forms for many household and economic surveys,
especially for rostering.

• Tables increase data density in the FormPane, which is helpful to both
interviewers and data editors. They can see more information in the Data
Entry Program window.

• With large tables, you can scroll the FormPane like a spreadsheet.

• Navigation is facilitated, especially with the arrow keys and the page up and
page down keys.

• Tables help organise long and complex instruments.

• Tables display both a block field name and an elementary field name in the
FormPane (blocks alone just display the elementary field name). The block
field name and the elementary field name can be replaced by field
descriptions.

You can have extremely large and complex blocks and tables, but usually you
will want to break them down into smaller units. In this section we discuss how to
construct blocks and tables. Not all topics mentioned above are covered in this
chapter; some are discussed in Chapter 5.

 Chapter 4: Blocks and Tables

Developer's Guide 155

4.1 Blocks

You will see that blocks are an easy and natural way to program survey
questionnaires. Many of the features mentioned above come automatically.

Block syntax
The syntax of a block is similar to that of a data model.

BLOCK BlockName
 TYPE {optional}
 FIELDS {optional, but usually present}
 LOCALS {optional}
 AUXFIELDS {optional}
 RULES {optional, but usually present}
 LAYOUT {optional}
ENDBLOCK

FIELDS {higher level}
 BlockFieldName : BlockName

Like a data model, it has a FIELDS section, a RULES section, possibly a TYPE
section, a LOCALS section, a LAYOUT section, and so on. You can see that
replacing BLOCK with DATA MODEL and ENDBLOCK with ENDMODEL would turn
it into a data model.

A commonly used block is one that gathers information about a person as shown
in the following example:

Chapter 4: Blocks and Tables

156 Blaise 4.5

BLOCK BPerson "Demographic data of respondent"

 FIELDS
 Name "What is your name?": STRING[20]
 Gender "Are you male of female?": (Male, Female)
 MarStat "What is your marital status?":
 (NevMarr "Never married",
 Married "Married",
 Divorced "Divorced",
 Widowed "Widowed")
 Children "How many children have you had?": 0..10
 Age "What is your age?": 0..120

 RULES
 Name
 Gender
 MarStat
 IF Gender = Female THEN
 Children
 ENDIF
 Age
 IF (Age < 15)
 "Age of respondent is less than 15"
 THEN MarStat = NevMarr "he/she is too young to be married!"
 ENDIF
ENDBLOCK

FIELDS
 Person : BPerson

Terminology
In the example above, BPerson is known as a block type name and Person is
known as a block field name.

Levels of organisation
The following example demonstrates the concept of levels of organisation that
may be inherent in a data model with blocks:

 Chapter 4: Blocks and Tables

Developer's Guide 157

DATAMODEL Example
 BLOCK BPerson
 FIELDS {block level}
 Name : STRING[20], EMPTY
 Age : 0..120
 Gender : (Male, Female)
 RULES {block level}
 Name
 IF Name <> EMPTY THEN
 Age
 Gender
 ENDIF
 ENDBLOCK

 FIELDS {datamodel level}
 Ident : 1000..9000
 HouseholdNumber : 0..25 Person : BPerson
 RULES {datamodel level}
 Ident
 HouseHoldNumber
 Person
ENDMODEL

We say that the fields Ident and HouseholdNumber are at the data model level
and that the fields Name, Age, and Gender are at the block level. We also say that
Ident and HouseholdNumber are at a higher level than Name, Age, and Gender.

Dot notation
To refer to a field or auxfield defined in a block from outside the block, you use
the dot notation. For example, you can refer to the field Name from outside the
Person block with the notation Person.Name.

A block allows you to bring together a group of fields that logically belong
together. The block above contains fields that are necessary for establishing a
person's identity and status.

! Notice that we use the convention of the capital B as the first character of a
block type name such as BPerson. By using this convention, it is always
clear in later FIELDS sections when you are declaring a field in terms of a
block type.

4.1.1 Blocks as types, repeating code
A block can be used as a type in a FIELDS section or a TYPE section. You can
define fields in terms of a block name.

Chapter 4: Blocks and Tables

158 Blaise 4.5

Processing such a block field in a RULES section means processing the block with
all its fields and rules. The block as a type allows you to repeat much code with
just a few words. In the following box, the block BPerson is repeated twice. This
repetition is done with just a few words in a FIELDS section at a higher level.

BLOCK BPerson
 {Much programming code}
ENDBLOCK

FIELDS
 Person1 : BPerson
 Person2 : Bperson

RULES
 Person1
 Person2

All of the code for block BPerson is repeated twice, once for Person1 and once
for Person2.

Define an array of blocks
You can define an array of blocks. For example:

LOCALS
 I : INTEGER

BLOCK BPerson
 {Much programming code}
ENDBLOCK

FIELDS
 HouseholdNumber : 1..10
 Person : ARRAY [1..10] OF BPerson

RULES
 FOR I := 1 TO 10 DO
 IF HouseholdNumber <= I THEN
 Person[I]
 ENDIF
 ENDDO

Here, the block field Person is defined 10 times in terms of BPerson with the
ARRAY statement. If there are six uniquely defined fields in the block, the block
contributes 60 fields to the data model. When you repeat blocks you are repeating
a lot of code as in a macro or a subroutine. In this code are data definitions in the
FIELDS section and data relationships in the RULES section.

 Chapter 4: Blocks and Tables

Developer's Guide 159

The code in the example below (which is also found in \Doc\Chapter4\
Commute7.bla), demonstrates arrayed blocks that collect information for each
person in a household. For each person with a job, an additional arrayed block
collects information about the workplace. In this example the blocks are used
without modification from person to person.

DATAMODEL Commute7 "National Commuter Survey, ex 7."

TYPE
 TYesNo = (Yes, No)

BLOCK BPerson "Demographic data of respondent"
 {Much code}
ENDBLOCK

BLOCK BWork "Data about work"
 {much code}
ENDBLOCK

LOCALS
 I: INTEGER

FIELDS {datamodel level}
 Street "Address of the household.": STRING[20]
 Town "Address of the household, @/Town?": STRING[20]
 HHSize "Number of persons in the household?" : 1..10
 Person : ARRAY[1..10] OF BPerson
 Work : ARRAY[1..10] of BWork;

RULES
 Street
 Town
 HHSize
 FOR I:= 1 TO HHSize DO
 Person[I]
 IF Person[I].Job = Yes THEN
 Work[I]
 ENDIF
 ENDDO
ENDMODEL

Enumerated instances of a block
There are times when it is appropriate to enumerate the repetitions of a block with
carefully chosen names rather than use arrays. An example of code containing
modes of transportation is in \Doc\Chapter4\commute8.bla, part of which is
also shown in the following example:

Chapter 4: Blocks and Tables

160 Blaise 4.5

DATAMODEL commute8 "National Commuter Survey, ex 8."
 BLOCK BDistance
 LOCALS
 AvgTime : REAL

 FIELDS
 Distance "Distance in this mode of travel?" : 0.0..200.0, DONTKNOW
 TotTime "What is the average time in this mode of travel?"
 : 1..200
 UnitTime "Unit of time?" :(Minutes, Hours)
 Minutes "Answer in minutes" : 0..2000.0
 RULES
 {much code}
 ENDBLOCK

 FIELDS {higher level}
 TotDistance "Total distance traveled." : 0..999.9
 Car "@WCar or Car Pool.@W" : BDistance
 SubWay "@WSubway or light rail.@W" : BDistance
 Bus "@WBus.@W" : BDistance
 Walking "@WWalking" : BDistance
 Cycling "@WCycling." : BDistance
 Other "@WOther commuting mode." : BDistance
ENDMODEL

In this case, the interviewer would see names such as Car.Distance in the Data
Entry Program if an edit were invoked. This name is easily interpreted and in this
example is better than something like Mode[1].Distance.

Usually you want to apply repeated instances of the same block to different
situations. For example, you may collect distance and time information for
different modes of transportation. You would want to modify question text and
apply different edit limits for each instance of the repeated block.

4.1.2 Block-level text
The easiest but most limited way to customise field text in a block is to add extra
question text at the block level. In \Doc\Chapter4\commute8.bla above,
each instance of the block is defined with some block-level text such as '@WCar
or Car Pool.@W':

Car "@WCar or Car Pool.@W" : BDistance

When the user is in the Car block, the text for the field Distance where BDistance
is a block type name and the block field Car is an instance of the block type, will
appear as shown in the following example:

 Chapter 4: Blocks and Tables

Developer's Guide 161

Car or Car Pool
Distance in this mode of travel?

In the code for commute8.bla above, note the text enhancement of the block
Car as opposed to the block Walking. In the former, the @W text enhancement
applies only to the text at the block level since an ending @W matches the
beginning one. In the block Walking, since there is no ending @W, the text
enhancement will carry over to the field text also. Prepare the data model
commute8.bla to see how this looks in practice.

In this example, text within the block is not modified as such but is preceded by
the block-level text. For some applications this is sufficient and very easy to
apply. For other applications there are more powerful methods.

4.1.3 Passing information to a block by direct reference
You can pass information to a block by directly referring to outside fields,
auxfields, or locals from within the block. (You can also use parameters, which
are covered below, or external files, which are covered in Chapter 5.)

From within the block you can refer to identifiers named in a direct higher level
by using the identifier name. For example:

BLOCK BDistance
 FIELDS
 Distance "What is the distance you travel when you
 @B^ProperPhrase@B to work?" : 0.0..200.0
 ...

 RULES
 SIGNAL
 (AvgTime > Lower)

ProperPhrase and Lower may be names of fields, auxfields, or locals declared
directly above the block. In this example they are defined at a direct higher level
so you can use the elementary name of the entity without the dot notation.

Dot notation for field and auxfield names
If you need to refer to a field or auxfield from another block that is not a higher
level block, you can use dot notation. For example, say you want to refer to the
name of the person in your field text but that the name is gathered in a separate
block. This can be accomplished as follows:

Chapter 4: Blocks and Tables

162 Blaise 4.5

FIELDS
 Distance "^Person.Name, what is the distance you travel when you go to
 work?" : 0.0..200.0

Person.Name refers to the field Name in the block Person.

Choice between direct reference and parameters
Though direct reference to outside fields, auxfields, or locals from within the
block is syntactically allowed, there are very good reasons for using parameters to
accomplish the same task. See the section below on parameters.

Readable block names
It is very useful to choose readable names for block field names. This is primarily
for the interviewer or data editor who must interpret these names in the Data
Entry Program. They also make the code much more readable for the developer.
In the examples above, either Person1.Children or Person[1].Children would be
readable by the interviewer or data editor.

4.1.4 Two or more separate blocks
In the following, blocks Person and Car are considered separate blocks:

BLOCK BPerson
 FIELDS
 Distance "What is the distance to your main workplace?
 @/@/[NOTE] In kilometers!" : 0.1..200.0
ENDBLOCK

FIELDS
 Person : BPerson

BLOCK BMode
 FIELDS
 Distance "What is the distance you travel when you
 Car or CarPool to your main work place?
 @/@/[NOTE] In kilometers!" : 0.0..200.0
ENDBLOCK

FIELDS
 Car : BMode

RULES
 Person
 Car

 Chapter 4: Blocks and Tables

Developer's Guide 163

Edit checks between fields of different blocks
Edit checks between fields of different blocks may be written in the last defined
block or at a higher level than the blocks. To maintain block independence
(reusability) and performance, it is better to write edits between blocks outside of
the blocks. Blaise® will invoke the edit in a timely manner.

If the block is repeated through an array statement, then you can use a FOR....DO
loop to define the edit over all instances of the repeated block. Here you still have
the advantage of writing the edit just once.

BLOCK BPerson
 FIELDS
 Distance
ENDBLOCK

FIELDS
 Person : BPerson

BLOCK BMode
 FIELDS
 Distance
ENDBLOCK

FIELDS
 Mode : ARRAY [1..6] OF BMode

RULES
 FOR I := 1 to 6 DO
 Mode[I].Distance < 1.5 * Person.Distance
 ENDDO

If you have a block that is repeated many times through enumeration and the edits
are written outside the blocks, then there can be many similar edits, which have to
be individually written. For example:

SIGNAL
 Car.Distance < 1.5 * Person.Distance
. . . .
 {Several other similar edits here.}

In the case of repeated blocks that are enumerated, it might be helpful to bring the
edit check into the definition of the last block. This way, the edit is written just
one time, which may ease maintenance. For example:

Chapter 4: Blocks and Tables

164 Blaise 4.5

BLOCK BPerson
 FIELDS
 Distance
ENDBLOCK
FIELDS
 Person : BPerson

BLOCK BMode
 FIELDS
 Distance
 RULES
 SIGNAL
 Distance < 1.5 * Person.Distance

ENDBLOCK
FIELDS
 Car : BMode
 Bus : BMode
 Train : BMode
 Other : BMode

The SIGNAL edit check is now within the last defined block. It directly refers to a
field in another block through dot notation, namely Person.Distance. A better
way to do this is to use an explicit parameter to bring the value of
Person.Distance into the edit.

4.1.5 Nested blocks
It is possible to nest blocks. Just declare a new block within an existing block as
shown in the following schematic:

 Chapter 4: Blocks and Tables

Developer's Guide 165

DATAMODEL Nested
 FIELDS
 CommuteMethods
BLOCK BPerson
 FIELDS
 Name
 HaveJob
 CarPool
 BLOCK BJob
 FIELDS
 NameOfJob
 Distance
 RULES
 NameOfJob
 Distance
 ENDBLOCK {Bjob}
 FIELDS
 Job : BJob
 RULES
 Name
 HaveJob
 IF HaveJob = Yes THEN
 Job
 ENDIF
 IF Job.Distance > 10 THEN
 CarPool
 ENDIF
ENDBLOCK {BPerson}
FIELDS
 Person : BPerson
RULES
 Person
 IF Person.Job.Distance > 10 THEN
 CommuteMethods
 ENDIF
ENDMODEL

One way to develop hierarchical data models is through nested blocks.

Parent and child blocks
In the example above, the block BPerson is said to be a parent block of BJob and
BJob is said to be a child of BPerson.

Dot notation for nested blocks
Within the block BJob you refer to the field Distance just by using its elementary
name as in the extracted code in the following example:

RULES {RULES at BJob level}
 NameOfJob
 Distance

Chapter 4: Blocks and Tables

166 Blaise 4.5

At one higher level, in the parent block BPerson, you refer to the same field with
dot notation.

RULES {rules at BPerson level}
 . . .
IF Job.Distance > 10 THEN
 CarPool
ENDIF

At the data model level, to refer downward to the field Distance, use a dot
notation with two dots and three names as in the following IF conditions:

RULES
 Person
 IF Person.Job.Distance > 10 THEN
 CommuteMethods
 ENDIF

Deeply nested blocks and edit display
You can nest blocks up to virtually unlimited levels. There is a way to limit the
number of dotted block and field names that are displayed to the user (in either
the Active Signal or Hard Error dialogs) when an edit is encountered in the Data
Entry Program. You do this by editing the mode library file. This is covered in
Chapter 6.

Separately coded subblocks
You can define a subblock outside a parent block but use it inside the parent
block. Compare the following to the above:

BLOCK BJob
 FIELDS and RULES
ENDBLOCK {BJob}

BLOCK BPerson
 FIELDS
 Job : BJob
ENDBLOCK {BPerson}

The block BJob is defined outside of the block BPerson though it is used within
BPerson. Whether you define a subblock within its surrounding or parent block is
often a matter of style. However, if the block BJob is to be used in another block
in this or another survey, then it is best to define it separately from the
surrounding block. It is still possible for the nested block to have full knowledge

 Chapter 4: Blocks and Tables

Developer's Guide 167

of information needed from the surrounding block. This is done with parameters,
which are discussed in the following section.

4.2 Parameters

To pass information into or out of a block you can use parameters. Parameters are
filled when the block is named in the RULES section. The explicit use of
parameters is much more general than direct reference to outside information.
They take a little more work to program but their use can pay big dividends.
Advantages of parameters include:

• Block independence. You do not have to know ahead of time the names of
fields or auxfields that are to be passed. This makes it easy to use the same
block again in the same survey or in different surveys without modification.

• Clarity of code. You see at the head of the block which values are imported
and which are exported.

• Testing. You can easily take even deeply nested blocks out of large
instruments and give them to clients in small test instruments. The clients can
experiment and quickly change the input values and see the effect on the
block and the values of the outputs. If the block works in the small test
instrument, it will work in the large one as well. See in \Doc\Chapter4\
test14.bla for an example where a block nested within a table is brought
into a small test instrument.

Because it is good programming practice to use parameters, further data models
in this manual will use them.

4.2.1 Parameter example
An example with five import parameters in the block type BDistance is illustrated
in the following example:

Chapter 4: Blocks and Tables

168 Blaise 4.5

 BLOCK BPerson
 FIELDS
 FirstName "What is your first name?" : STRING[20]
 SurName "What is your surname?" : STRING[20]
 RULES
 ENDBLOCK

 FIELDS
 Person : BPerson

 BLOCK BDistance
 PARAMETERS
 Respondent, ProperPhrase : STRING
 Lower, Upper : INTEGER

 LOCALS
 AvgTime : REAL

 FIELDS
 Distance "^Respondent, what is the distance you travel when you
 @B^ProperPhrase@B to your main work place?" : 0.0..200.0, DONTKNOW
 TotTime "What is the average time you spend on/in this mode of
 travel in minutes." : 1..200
 UnitTime "What is the unit of time?" :(Minutes, Hours)
 RULES
 Distance
 IF (Distance > 0) OR (Distance = DONTKNOW) THEN
 TotTime
 UnitTime
 SIGNAL
 IF Distance > 0 THEN
 AvgTime := Distance/(TotTime/60)
 AvgTime > Lower
 INVOLVING(Distance, TotTime, UnitTime)
 "@R[WARNING E1] Your rate of speed seems to be to slow.
 It is ^AvgTime kilometers per hour. Is this correct?"
 AvgTime < Upper
 INVOLVING(Distance, TotTime, UnitTime)
 "@R[WARNING E2] Your rate of speed seems to be to high.
 It is ^AvgTime kilometers per hour. Is this correct?"
 ENDIF
 ENDBLOCK

 FIELDS
 Car : BDistance

 RULES
 Person
 WholeName := Person.FirstName + ' ' + Person.SurName
 Car(WholeName, 'take the car or carpool', 15, 100)

The first two import parameters in the BDistance block are Respondent and
ProperPhrase. These are string parameters that modify question text. The last
two, Lower, and Upper are numbers used in edits. This block can be used again
without modification in this survey or in others. See
\Doc\Chapter4\commut11.bla for an example.

 Chapter 4: Blocks and Tables

Developer's Guide 169

An instance of the block type BDistance is defined for cars.

FIELDS
 Car : BDistance

Then in the rules it is called with an appropriate parameter list.

 WholeName := Person.FirstName + ' ' + Person.SurName
 Car(WholeName, 'take the car or carpool', 15, 100)

It is in the rules that the parameters get their values. Parameters can take many
forms, including a local WholeName, an expression 'take the car or carpool,' or
numbers 15, 100. In another instance of the block, different parameter values are
used:

FIELDS
 Bus : BDistance
RULES
 Bus(WholeName, 'take the bus', 10, 35)

The last two parameters have changed to modify the block for buses instead of for
cars.

4.2.2 Parameter details
Parameters are introduced in the first part of the block definition in a section
starting with the reserved word PARAMETERS.

Parameter definition
A parameter definition consists of a series of parameter names separated by
commas and followed by a colon, and a type definition. A parameter name is an
identifier, and therefore has to obey the rules for identifiers. The type can be any
predefined field type except open, the identifier of a user-defined type, or a type
BLOCK. In the FIELDS or RULES section, a parameter can be used in the same
way as a field name or variable, except that it cannot be asked, shown, or kept.

When you use a parameterised block in a RULES section, you have to specify the
actual values of the parameters between parentheses after the block field name.
This is known as a parameter list. In the statement Car(WholeName, . . .), the
value of the parameter Respondent is replaced by the string WholeName.

Chapter 4: Blocks and Tables

170 Blaise 4.5

Kinds of parameters
There are three kinds of parameters: import, export, and transit. The following
table defines them:

Figure 4-1: Types of parameters
Parameter Type Description

Import Use an import parameter to bring a field value into a block.
You may not change its value inside the block.

Export Use an export parameter to compute a value in a block, and to
move that value out of the block. The parameter need not
have a value before the block is processed. A possible initial
value is disregarded.

Transit A transit parameter is a combination of an import and an
export parameter. Before accessing the block, the parameter
must have an initial value. Its value may be changed inside the
block. After the block has been executed, the parameter will
have its new value.

You give the status IMPORT, EXPORT, or TRANSIT to a parameter by preceding its
definition with one of these three reserved words. The default status is IMPORT.
The parameter Name is an import parameter in the example above.

The following example contains an import and an export parameter:

 Chapter 4: Blocks and Tables

Developer's Guide 171

TYPE
 TYesNo = (Yes, No)

BLOCK BWork
 PARAMETERS
 IMPORT Respondent : STRING
 EXPORT Commut: TYesNo
 FIELDS
 Job "Does ^Respondent have a job?": TYesNo
 Dist "What is the distance to ^Name's work?" : 0..200
 RULES
 Job
 IF Job = Yes THEN
 Dist
 IF Dist > 10 THEN
 Commut:= Yes
 ELSE
 Commut:= No
 ENDIF
 ELSE
 Commut:= No
 ENDIF
ENDBLOCK

FIELDS
 NameHH "What is the name of the head of the household?": STRING[20]
 Commuter "Is the head of the household a commuter?": TYesNo
 Work: BWork

RULES
 NameHH
 Work(NameHH, Commuter)

Name is an import parameter. Its value is only used as a fill in a question text.
Commut is an export parameter. Before the block is executed, this parameter has
no value. It is computed in the block. When the block has been processed, the
field Commuter will have the value Yes or No. In this example, Commuter is
never displayed on the screen (though it is kept in the database).

You specify the values to be given to the parameters in the RULES section where
the block is called. The order of the parameters in this parameter list when calling
a block field must be the same as the order of the declared parameters in the
block.

There are two reasons to use specific types of parameters such as import. One is
clarity. When the block is processed it is clear what the parameters can be used
for. The value of a transit parameter can be changed, an export parameter that has
no initial value can acquire a value, and an import parameter will not change
inside the block. The second reason is mainly technical. The system knows that
an import parameter does not change, so inside the block there is no need to keep
track of changes. This will improve processing efficiency.

Chapter 4: Blocks and Tables

172 Blaise 4.5

A specific advantage of using import parameters is that you can use them to pass
expressions to a block, while export and transit parameters must be variable
entities: fields, auxfields, or locals.

Selective checking
When you pass information from one block to another (no matter how you do it in
the code), parameters will be used by Blaise to do this. If you do not declare
parameters explicitly then Blaise will generate them for you. These undeclared
parameters are known as internal parameters. Parameters and the administration
of parameters (explicit or internal) are the basis of the selective checking
mechanism. This is what allows you to have a huge data model with tens of
thousands of questions, ask all appropriate fields, always enforce all necessary
routes and checks, and not slow down.

It is possible to abuse this system of parameter administration. You can cause the
Data Entry Program to constantly check the value of thousands of parameters at
one time. This would slow down a large data model considerably in interview
mode. This won't happen if you follow the following few simple guidelines.

These will not be necessary for small data models but are valuable for large ones.

• Give structure to the data model. This may happen naturally for multi-level
rostering household surveys but not for some economic surveys where many
blocks are all on the highest level. In this case, it will be helpful if you
enclose related blocks within higher level blocks. Blaise uses the block
structure of a data model to determine which blocks need to be checked.

• Declare locals and auxfields at the lowest level possible. By doing this you
accomplish two things: block independence, and you do not pass parameters
unnecessarily from one block to a lower one. This will save on parameter
administration and improve performance.

• Declare external files at the lowest level. The reasons are the same as for
above. This is especially valuable when you have very large arrays and need
to modify each instance of an arrayed block through an external file.

• Use explicitly declared parameters to pass information to a block.

The selective checking mechanism works by keeping track of which blocks have
to be checked. It knows this by keeping track of values of explicit and internal
parameters.

 Chapter 4: Blocks and Tables

Developer's Guide 173

4.3 Included Files

Once blocks, or even FIELDS and RULES sections, have been developed and tested,
they can be used in other data models as well. The program code for the block can
be held in a separate file and included in the main data model file. This reduces
development time and encourages co-ordination between surveys. You can be
sure that job information is defined and asked in exactly the same way in all
surveys involved.

Blaise allows a data model specification to be distributed over a number of text
files. One file must be the primary file. In this file you can refer to other files
using the INCLUDE command. It is the primary file that is prepared.

There are some advantages to using the INCLUDE command:

• You can save a block of source code in its own file and include it in a variety
of different surveys. In some cases it is worthwhile to save even part of a
block (for example, a RULES section applicable to different blocks) in a
separate file.

• You can allocate the programming of a large survey to several different
people, each developing their code in separate files.

4.3.1 Format of the INCLUDE command
The format of the INCLUDE command is:

INCLUDE "FileName"

The command starts with the reserved word INCLUDE, followed by the file name
between quotes. When necessary, you can include a path. For example, a hard-
coded path:

INCLUDE "c:\library\person.inc"

This refers to the file person.inc in the LIBRARY folder. When Blaise is
preparing a model specification in a primary file and it encounters an INCLUDE
command, it continues by preparing the included file. When it reaches the end of
the file, it returns to the primary file and continues where it stopped.

Chapter 4: Blocks and Tables

174 Blaise 4.5

You may also use relative path to identify the location of a file. This allows for
the movement of source code around on different network environments. For
example:

INCLUDE "..\source\person.inc"

You can have many INCLUDE commands in one file. You can also have INCLUDE
commands in files that are included. There is practically no limit to nesting the
commands this way. For example, \Doc\Chapter4\commut13.bla:

DATAMODEL Commute13 "National Commuter Survey, ex 13."

 TYPE
 TYesNo = (yes, no)
 LOCALS
 WholeName : STRING
 FIELDS
 WorkPlace "What is the name of your main workplace?" : STRING[20]
 INCLUDE "BPerson.inc"
 INCLUDE "TDistanc.inc"

 RULES
 Person
 IF Person.Job = yes THEN
 WorkPlace
 WorkPlace := CAP(WorkPlace)
 WholeName := Person.FirstName + ' ' +
 Person.SurName
 Commute(WholeName)
 ENDIF
ENDMODEL

In this data model are two INCLUDE statements. The file tdistanc.inc contains
yet another INCLUDE statement for the file bdistanc.inc.

TABLE TCommute

 PARAMETERS
 Respondent : STRING

 INCLUDE "BDistanc.inc" {row block}
 . . .
ENDTABLE

You can put INCLUDE commands in the source code at any point where you could
start a new section, such as a FIELDS section, a TYPE section, and a block or table.
You cannot have an INCLUDE command in the middle of a RULES section.

 Chapter 4: Blocks and Tables

Developer's Guide 175

4.3.2 FIELDS and RULES sections in included files
Though it is common to use included files for whole blocks, it may be
advantageous to use included files for FIELDS and RULES sections.

For example, some data models are developed for use in international settings.
While Blaise does have an explicit language capability, another approach is to
separate the FIELDS and RULES sections. If you do this, you can change the
language of the question text only, and leave the field names and the already-
tested rules alone.

You might also want to separate fields and rules in separate files if you allow
subject matter specialists or clients to concentrate on question text wording and
presentation. Developers can then concentrate on the flow and data relationships
in the RULES section.

4.3.3 File name extensions
It is helpful if included files have standard names for the file extensions. In this
manual we use the standard extension of .inc for files that are included in the
main data model. Other specific extensions may be adopted, for example, .lib
for type libraries or .prc for procedures. This makes it much easier to back up
and identify the many files that sometimes go into a large and complex data
model. Suggested file name extensions are listed in Chapter 2.

4.4 Tables

Questionnaires are often laid out to present groups of questions as a table or a
grid. A household roster of members is a typical example. Every row stands for a
member of the household. The columns denote characteristics like age, gender,
marital status, and so on. Economic surveys make extensive use of tables: rows
can be used for different categories of exported goods and there can be columns
for quantities and values. Examples of tables in \Doc\Chapter4 include
commut13.bla and \Doc\Chapter4\commut14.bla. The former is an
example of a table with enumerated rows, the latter with arrayed rows. Data
models \Doc\Chapter4\ncs02.bla and \Doc\Chapter4\ncs03.bla
show the use of tables in a rostering situation. Data models
\Doc\Chapter4\hh1.bla through \Doc\Chapter4\hh6.bla show several
different ways to collect household rosters.

Chapter 4: Blocks and Tables

176 Blaise 4.5

A table is a special kind of block. The sample below is an example of a table,
from \Doc\Chapter4\commut15.bla:

DATAMODEL Commut15 "National Commuter Survey, ex 15"

 LIBRARIES MyLib

 INCLUDE "BPerson.inc"

 TABLE BHousehold "Demographic data of respondent"
 LOCALS
 I: INTEGER
 FIELDS
 HHSize "Size of the household?": 1..8
 Person: ARRAY[1..8] of BPerson
 RULES
 HHSize
 FOR I:= 1 TO HHSize DO
 Person[I]
 ENDDO
 ENDTABLE

 FIELDS
 HouseHold: BHousehold
 RULES
 Household
ENDMODEL

You define a table in the same way as a block. Just substitute TABLE and
ENDTABLE for BLOCK and ENDBLOCK. Each field in the FIELDS section of the
table denotes a row of the table. In the example above, the field HHSize is a row
of one column. There are eight rows of the person block with several columns.
The figure below shows how this would appear in the Data Entry Program (DEP).

Figure 4-2: Example table in the DEP

If you want more than one column in your table, you must use blocks within the
table as rows. The highest level block in the table is the row block. If there are
subblocks within the row block then they are part of the same row. The total

 Chapter 4: Blocks and Tables

Developer's Guide 177

number of fields in the block defines the number of columns. If a block contains a
conditional route where either field A or fields B and C are processed, there will
be three columns, although fields A and B will never be processed at the same
time for the same person. Every possible field must have its own place in the
table.

Tables with unequal rows
You can have a table with unequal row sizes. In commut15.bla above, the first
row of the table has one column; the other rows have five columns. If you prepare
the data model you will note that the first column heading is entitled HHSize, not
FirstName.

Scrolling in tables
You can have many columns in your table. If there are more columns than can be
displayed on the screen, then the table will scroll to the right as it is being filled in
(like a spreadsheet). If there are more rows than can be displayed, then the table
will scroll down as the rows are filled in.

4.4.1 Extremely large tables
Blaise can handle extremely large tables, but a large table can have performance
problems if not properly handled. This is because Blaise considers the whole table
to be one page even though only a small part of it is on the screen. It will redraw
the whole page every time you enter an answer. It can take a long time to redraw
the whole page in extremely large tables. You can avoid this problem in two
ways.

Break a table into smaller tables
The first is to break the table into several smaller tables, for example 5 tables of
20 rows each. Array the tables just as you would array block rows within a table.
For example:

TABLE TGroup
 BLOCK BPerson
 ENDBLOCK
 FIELDS
 Person : ARRAY [1..20] OF BPerson
ENDTABLE
FIELDS
 Group : ARRAY [1..5] OF TGroup

In the above example, there are 100 rows spread over 5 tables.

Chapter 4: Blocks and Tables

178 Blaise 4.5

Page breaks in a table
Breaking a table into several tables is acceptable if the rows of the tables do not
have to communicate with each other. Another way to improve performance in a
table is to break the table into several pages. This can be done either through a
configuration file or through language statements in the rules of the table.

There is a setting you can edit in the Blaise mode library file, which is a file you
can customise to control layout in the Data Entry Program, that automatically
breaks tables into several pages. By default it allows eight rows on a page.
Information on editing the mode library file, or modelib for short, is in
Chapter 6.

If you want to take matters into your own hands and control the page breaks in
the table through language statements, first disable the setting mentioned above in
the modelib file. Then use the NEWPAGE key word. Suppose a table has 40 rows
and many columns. You can break up the table into 2 pages with perhaps 20 rows
each by using NEWPAGE in the LAYOUT section of the table. For example:

RULES
 FOR I := 1 TO 40 DO
 CommuteMode[I]
 ENDDO

LAYOUT
 AFTER CommuteMode[20]
 NEWPAGE

Another benefit of implementing page breaks between rows of extremely large
tables is that this allows you to page through a table with the page down or page
up keys. Without the pagination, the page keys would get you out of the table to
the screen immediately following or preceding the table.

Dummy fields
Another useful feature is the DUMMY instruction. A dummy takes the place of a
field, but does not do anything. You can use a dummy to create a 'hole' in your
table, so fields line up correctly in a column.

An example of the application of DUMMY is in the following example:

 Chapter 4: Blocks and Tables

Developer's Guide 179

DATAMODEL Commut16 "National Commuter Survey, ex 16"

 BLOCK BWaiting
 FIELDS
 Time "How much time do you spend waiting?" : 0..500
 RULES
 Time
 LAYOUT
 AT BLOCKSTART
 DUMMY 2
 ENDBLOCK

 BLOCK BWalking
 FIELDS
 Dist "What distance do you cover walking?" : 0..20
 Time "How much time do you spend walking?" : 0..500
 RULES
 Dist Time
 LAYOUT
 AFTER Dist
 DUMMY
 ENDBLOCK

 BLOCK BPublicTransport
 FIELDS
 Dist "What distance do you cover by public transport?": 0..300
 Cost "What are the average daily costs?": 0..100
 Time "How much time do you spend in public transport?": 0..500
 RULES
 Dist Cost Time
 ENDBLOCK

 TABLE BTransport "Transport data of respondent"
 FIELDS
 Waiting: BWaiting
 Walking: BWalking
 PubTrans: BPublicTransport
 RULES
 Waiting
 Walking
 PubTrans
 ENDTABLE

 FIELDS
 Transport: BTransport
 RULES
 Transport
ENDMODEL

The block type BTransport contains three block fields in the RULES section.
Therefore, the table has three rows. Each row is a different block type and we
want to know different information for the BWaiting, BWalking, and BPublic
Transport blocks. But we also want our table to be well organised. Therefore, we
have used the dummy field in the Waiting and Walking blocks. The result is that
all these blocks have the same number of fields, either real or dummy. Thus the
table has three even columns. The dummy fields are used in such a way that all

Chapter 4: Blocks and Tables

180 Blaise 4.5

distances are put in column one, all costs in column two, and all times in column
three. The following shows how this would look in the Data Entry Program:

Figure 4-3: Table with dummy fields in the DEP

4.4.2 Different kinds of tables
There are many different ways to construct a table. The examples below are for
household enumeration and can be found in the \Doc\Chapter4 folder.

Figure 4-4: Different kinds of household rosters

Method Comment
Example
File

The number of rows collected in
the table depends on a
previously collected household
size.

To add more members to the
household you must first return
to and change the field collecting
household size.

hh1.bla

Fill in rows of the household
table until all members are
included.

If you have previously collected
household size, you can
compare the number or rows in
the table to the previous number.

hh2.bla

Collect just the names of all
household members. Then
collect details on all people.

This is done in one table in this
example.

hh3.bla

Collect just the names of all
household members. Then
collect details on all people.

This is done in two tables in this
example.

hh4.bla

Allow the interviewer to fill in the
data of the household grid in any
order.

Edits are used to ensure that the
table is completely filled in.

hh5.bla

The illustrative examples above give only a flavour of what can be accomplished
with various styles of tables. The one you choose depends on the requirements of
the survey and the preferences of the study managers and clients. The code in all
these examples is remarkably similar, as only a few changes are needed to alter
the style of collection.

 Chapter 4: Blocks and Tables

Developer's Guide 181

4.4.3 Protecting blocks and tables from further change
For some applications, you will want to protect the household section from
further change once the data in it are collected and verified. This can be the case
where a sampling routine is used to subsample household members for further
questions. Changes to the household section after subsampling (and even perhaps
after the subsampled respondents have answered the further questions) may cause
the subsample to be redrawn, leading to inclusion of different members in the
subsample. You might not want this to happen. In this situation, it is easy to
disallow access back to the table after a certain point in the questionnaire. This is
done with the KEEP or SHOW method applied to the table level. This method is
illustrated in \Doc\Chapter4\hh6.bla. The basic syntax is shown in the
following example:

 FIELDS
 Done "Are you sure I have included everyone?" : (Yes, No)
 TABLE BHHGrid
 BLOCK BPerson
 FIELDS
 Name : STRING[30], EMPTY
 RULES
 ENDBLOCK
 FIELDS
 Person : ARRAY [1..20] OF BPerson
 RULES
 FOR I := 1 TO 20 DO
 IF I = 1 OR Person[I – 1].Name <> EMPTY THEN
 Person[I]
 ENDIF
 ENDDO
 ENDTABLE
 FIELDS
 HHGrid : BHHGrid
 RULES
 Done.KEEP
 IF Done = Yes THEN
 HHGrid.KEEP
 ELSE
 HHGrid
 ENDIF
 Done

In this example, the household table can be modified until the field Done receives
the value Yes. After that, the interviewer can no longer get to the table. The data
from the household table are retained and available to other parts of the program.

Chapter 4: Blocks and Tables

182 Blaise 4.5

4.5 Mini-data Models

For large and complex surveys, it is extremely effective to use mini-data models
for development and testing. The idea is to develop at least some blocks
independently in a small data model, test them, and then plug them into a larger
data model. The explicit use of parameters makes this possible. Once you know
that the block works in the mini-data model, you know it will work correctly in
the larger data model, assuming that the proper parameters are passed to it.

An example of a mini-data model is \Doc\Chapter4\distance.bla, which
is a mini-data model for the block BDistance.inc.

4.6 Block Computations

There may be times when you have to transfer the contents of one block of data to
another. If the blocks have the same block type definition, this can be easily
accomplished with block computations. Consider:

BLOCK BDemoA
 FIELDS
 StrField: STRING[10], EMPTY, DK, RF
 IntField : INTEGER[2], EMPTY, DK, RF
 RealField : REAL[3], EMPTY, DK, RF
 EnumField : TYesNo, EMPTY, DK, RF
 SetField: SET OF TYesNoMaybe, EMPTY, DK, RF
ENDBLOCK
FIELDS
 Demo1 : BDemoA
 Demo2 : BDemoA

Block assignment
Demo1 and Demo2 are two instances of the block type BDemoA. You can
compute data from Demo1 to Demo2 with the following assignment in the RULES
section:

Demo2 := Demo1 {block computation}

It is almost always better to condition the block computation on a trigger field and
enclose it within an IF condition. For example:

 Chapter 4: Blocks and Tables

Developer's Guide 183

One_To_Two
IF ((One_To_Two = Yes) AND (Demo1 <> EMPTY)) THEN
 Demo2 := Demo1 {Block computation.}
 One_To_Two := EMPTY
ENDIF

The block computation is done only when the value of the field One_To_Two is
equal to Yes. This trigger field is set back to empty after the block computation to
prevent inadvertent computations in case fields of Demo1 are filled in again.

This example will copy values of all fields from Demo1 to Demo2 as well as all
statuses such as Don't Know, Refusal, and Empty. This example is held in
\Doc\Chapter4\bcomp.bla.

4.7 Array Methods

If you have an array of blocks or fields, you can insert, delete, or exchange array
elements, even if the array elements are blocks. Consider the following (for the
complete data model, see the example file bcomp.bla):

TABLE TBlockArray
 LOCALS
 I : INTEGER
 FIELDS
 Row : ARRAY [1..3] OF BDemoA
 InsertRow "Insert an empty row above this row number." : 1..3, EMPTY
 DeleteRow "Delete this row number." : 1..3, EMPTY
 ExchangeRows "Exchange these two row numbers."
 : SET [2] OF (One, Two, Three), EMPTY

This table holds an array of three rows defined in terms of the block BDemoA.
The fields InsertRow, DeleteRow, and ExchangeRows collect the number of the
rows to insert, delete, or exchange. The actual manipulation of array elements is
done in the RULES section:

Chapter 4: Blocks and Tables

184 Blaise 4.5

 RULES
 FOR I := 1 TO 3 DO
 Row[I]
 ENDDO
 InsertRow
 IF InsertRow > 0 THEN
 Row.INSERT(InsertRow) {Insert row.}
 InsertRow := EMPTY
 ENDIF
 DeleteRow
 IF DeleteRow > 0 THEN
 Row.DELETE(DeleteRow) {Delete row}
 DeleteRow := EMPTY
 ENDIF
 ExchangeRows
 IF CARDINAL(ExchangeRows) = 2 THEN
 Row.EXCHANGE(ORD(ExchangeRows[1]),{Exchange rows}
 ORD(ExchangeRows[2]))
 ExchangeRows := EMPTY
 ENDIF
 LandOn
ENDTABLE

For all three array methods, the trigger fields InsertRow, DeleteRow, and
ExchangeRows are set to empty after the method has been applied. The array
methods for insert, delete, and exchange are:

Row.INSERT(Index)
Row.DELETE(Index)
Row.EXCHANGE(Index1, Index2)

where Index, Index1, and Index2 are numeric expressions. For insert and delete,
Index is field InsertRow and DeleteRow, respectively. For exchange, Index1 and
Index2 are elements of the set field ExchangeRows.

When insert is applied, all rows are moved down one line starting at the index
number of the row. In this example of three rows, if Index is 2, then the second
row becomes the third, and the previous third row disappears. The new second
row is empty.

When delete is applied, the row of the index is emptied out, and all higher number
rows move up one. If your intent is merely to empty out a row, but not to move
other rows up one, where n is a number or numeric expression, use the following
block computation:

Row[n] := EMPTY

 Chapter 4: Blocks and Tables

Developer's Guide 185

For the exchange method, there are many ways to obtain the values of Index1 and
Index2. You can do this with integer fields, for example. In this example, a SET
field is used to state them. This makes it easy to ensure that one number is not
entered twice (Blaise checks this automatically for a SET field). The actual
exchange will take place only when there are two numbers in the field
ExchangeRows. This is ensured by the following statement in the IF condition:

IF CARDINAL(ExchangeRows) = 2 THEN

Then you obtain each entry from the set field ExchangeRows with the ORD
function:

ORD(ExchangeRows[1]), ORD(ExchangeRows[2])

This gets the first and second values of the set field ExchangeRows, respectively.

4.8 Helpful Administrative and Survey Management Blocks

You can define blocks that have little or nothing to do with the subject matter of
the survey but which help with the administration of the survey. For example, you
might have blocks for:

• Nonresponse, to record reasons that the form is incomplete.

• Appointment, for appointments for one or all respondents.

• Unique identification, containing all components of the primary key.

• Screening, to make sure you only interview those who are supposed to be
interviewed.

• Management, to keep track of interview progress, mode of processing, where
data came from, who the interviewer was, and so forth.

Chapter 4: Blocks and Tables

186 Blaise 4.5

• Data transmission, for Computer Assisted Personal Interviewing, so the
interviewer can indicate to send forms once they are completed.

• Conclusion, to thank the respondent and to indicate when the subject matter
part of the interview is done.

Not all surveys require all of the blocks above. By developing administrative
blocks you can standardise procedures you use on various surveys and save much
development time. An example is the National Commuter Survey, which is
\Doc\Chapter4\ncs01.bla, and is shown in the following example:

 Chapter 4: Blocks and Tables

Developer's Guide 187

DATAMODEL NCS01 "National Commuter Survey"

PRIMARY Ident
PARALLEL HouseNonResp
 Appointment_for_Household = HouseAppt
 HouseTransmit
LIBRARIES MyLib

INCLUDE "Manage.INC" {Manage}
INCLUDE "DateTime.INC" {DateTime}
INCLUDE "Ident.INC" {Ident}
INCLUDE "Conclude.INC" {HouseConclude}
INCLUDE "Transmit.INC" {HouseTransmit}
INCLUDE "Appoint.INC" {HouseAppoint}
INCLUDE "NonResp.INC" {HouseNonResp}

 BLOCK BHousehold {subs for real household block}
 FIELDS
 Done "Household roster finished?" : TContinue
 RULES
 Done
 ENDBLOCK
 FIELDS
 Household : BHousehold

 RULES
 Ident
 Manage
 DateTime
 Household
 HouseConclude('HOUSEHOLD')
 IF (Household.Done = EMPTY) AND
 (HouseConclude.ThankYou = EMPTY) THEN
 HouseNonResp('HOUSEHOLD', HouseTransmit.DataReady)
 DUMMY
 ENDIF
 NEWPAGE
 IF (Household.Done = EMPTY) AND
 (HouseNonResp.Done = EMPTY) AND
 (HouseConclude.ThankYou = EMPTY) THEN
 HouseAppt('HOUSEHOLD', Manage.FormStat)
 DUMMY
 ENDIF
 NEWPAGE
 HouseTransmit('', HouseConclude.Interviewer)
 IF Household.Done <> EMPTY THEN
 HouseTransmit.DataReady := Ready
 ENDIF
ENDMODEL

This data model demonstrates how the administrative parts of a data model can
work together. There are no subject matter questions in this data model yet. The
only household-level question is a field called Done that indicates when the
household roster part of the form is finished. This data model handles
administration only for household-level data.

Chapter 4: Blocks and Tables

188 Blaise 4.5

Two blocks, DateTime and Manage, will never be seen by the user. Other blocks
are parallel blocks where you can break out of the normal sequence of
interviewing. These include Appointment_for_Household, HouseNonResp, and
HouseTransmit. Parallel blocks are covered below. The nonresponse and
appointment blocks deserve special mention.

4.8.1 Nonresponse block
In case of nonresponse you will stop the interview without having answers to all
relevant questions. For follow-up strategies in some surveys, it is necessary to
collect information about the reason for nonresponse and the severity of refusals.
You can put all questions that try to collect this information in a special block.

Here is the nonresponse block from the preceding ncs01.bla data model:

 Chapter 4: Blocks and Tables

Developer's Guide 189

BLOCK BNonResp

 PARAMETERS
 IMPORT
 Whom : STRING
 EXPORT
 DataReady : DataReadiness
 LOCALS
 text1, text2 : STRING[199]
 FIELDS
 Thanks
 "Thank you for your time." : TContinue
 Reason
 " @Y[INTERVIEWER] Enter the reason for non-response for
 @B^Whom@B." : (Innac "Impossible to contact",
 Refuses "Refuses cooperation",
 NotPoss "Cooperation not possible now, appointment not
 possible within survey period",
 Others "Other reason(s)")
 KindOfRefuse "Enter the severity of refusal."
 : (Mild, Firm "Firm but friendly", Hostile)
 OthReas
 " @Y[INTERVIEWER] Please enter the reason for non-response.@Y"
 : string[40]
 Done "Done with the nonresponse block. Enter 1." : TContinue
 RULES
 Reason
 IF Reason = Others THEN
 OthReas
 ENDIF
 IF Reason = Refuses THEN
 KindOfRefuse
 ENDIF
 IF Reason <> EMPTY THEN
 DataReady := Ready
 ENDIF
 Done
ENDBLOCK

The statements in the RULES section of the data model that call the nonresponse
block are:

IF (Household.Done = EMPTY) AND
 (HouseConclude.ThankYou = EMPTY) THEN
 HouseNonResp('HOUSEHOLD', HouseTransmit.DataReady)
ENDIF

Two parameters are used to customise the nonresponse block. Thus it must be put
on the route in order to pass a value of the parameter. An additional advantage of
having it on the route is to state when it should not be available. If the field
Household.Done is filled, then the nonresponse block for the household itself
should not be eligible. An export parameter is also defined here. It will compute a
value of Ready in the field DataReady in the HouseConclude block.

Chapter 4: Blocks and Tables

190 Blaise 4.5

4.8.2 Appointment block
Another reason to stop the interview is that people are willing to cooperate, but
don't have time at that moment. You would like to have the option to make an
appointment for another day and time. Questions for making an appointment can
be included in a special block that gets the PARALLEL status. The implementation
is similar to that of a nonresponse block, as demonstrated in appoint.inc in
\Doc\Chapter4.

If you inspect the appointment block in its entirety you will see that the logic in
the administrative blocks can be quite complex. This kind of programming
requires extensive testing to ensure that the block will perform correctly in all
situations. This goes not only for the inside of the block but also for its effect on
other administration blocks. In this example, the appointment block is available
only if the nonresponse block is empty.

All blocks are constructed using parameters. This allows the same block to be
used as many times as necessary. For example, one instance of the appointment
block may be used to make an appointment for the household and other instances
of it may be used to make appointments for each of the respondents. In fact, four
of the blocks for conclusion, transmission, appointment, and nonresponse will
have multiple instances eventually. They will be used for individual respondents
as well as household-level administration.

The blocks work together. For example, once the field HouseConclude.Done is
filled in, the HouseTransmit block knows this through a computation.

The Appointment_for_Household block is available until the household roster is
finished, or until the nonresponse block is filled in. To see this, prepare and
invoke the ncs01.bla instrument, and then immediately access the Parallel
Blocks dialog box using the menu command Navigate Subforms. You will see
that the block Appointment_for_Household is available. Now return to the
ncs01.bla main instrument. Fill in the field Done either in the household block
or the nonresponse block. Now return to the Parallel Blocks dialog box. You will
see that the block Appointment_for_Household is no longer available.

This ncs01.bla data model will be built up in this and successive chapters into a
full demonstration of how to build a multi-level rostering, or hierarchical,
household survey instrument, including all the survey management and data
management tools.

 Chapter 4: Blocks and Tables

Developer's Guide 191

4.9 Parallel Blocks

You often need to break out of the sequential processing order as specified in the
RULES section. This is done with parallel blocks. Parallel blocks can be used for
many situations, such as:

• Concurrent interviewing. One of the problems in interviewing respondents in
large household surveys is that circumstances can change during the
interview. Respondents may leave or join the session. With concurrent
interviewing you can interview several respondents at once, interview
respondents in any order, or proceed with one or a few respondents and come
back to the others later.

• Appointment block. You never know when you will need to stop an interview
and make an appointment.

• Nonresponse block. Because the respondent may decide at any time to quit
the interview, you must be able to get to the nonresponse block at any time.

• Form notes from previous surveys. In panel surveys, form notes from
previous waves may be valuable for subsequent interviewers. These can be
made available for on-line inspection at any time during the interview.

• Different respondents for different parts of one form. In economic surveys,
you may have to visit different respondents for each part of the form. With
parallel blocks you can fill in whatever part of the form you need to,
depending on whom you are talking to at the moment.

Parallel status
You can give the status PARALLEL to any block field. These are accessed in the
Data Entry Program (DEP) by selecting Navigate Subforms from the menu, by
selecting the appropriate parallel tab sheet, or through an assigned function key.
This allows you to jump to a parallel block field at any time during a data entry
session. If you reach the end of a parallel block, you can either finish the current
form or jump back to the main instrument. You can jump from one parallel block
to another. If you jump back to a parallel block that was interrupted, you can
continue at the point of interruption.

Parallel blocks are introduced in the SETTINGS section in the beginning of the data
model. You include the reserved word PARALLEL and a list of block field names.
Here is an example:

Chapter 4: Blocks and Tables

192 Blaise 4.5

PARALLEL
 HouseNonResp
 Appointment_for_Household = HouseAppt
 HouseTransmit

These are all names of administrative blocks. The second parallel block has been
given a label, which will make the parallel block name more readable in the DEP.

Below is an example with nested blocks. If you want to jump to a nested block,
you have to precede its name with the names of all surrounding blocks. The
entries Household.Head and Household.Partner will be listed in the Parallel
Blocks dialog box of the DEP. For deeply nested blocks particularly, such a long
field name may be difficult to interpret. Therefore, it is a good idea to attach a
name to the parallel name:

PARALLEL
 Head_of_household = Household.Head
 Partner_of_head = Household.Partner

Now the entries Head_of_household and Partner_of_head will be included in the
Parallel Blocks dialog box in the DEP.

The field name can also refer to an array of blocks. In that case, the individual
array elements will also appear as parallel blocks in the DEP. Note that the
Parallel Blocks dialog box will at any given moment contain only those field
names that are accessible in the RULES section given the current state of affairs.
You can experiment with the data model ncs01.bla above to see how the
administrative blocks interact with one another.

Unrouted parallel blocks
Parallel blocks that are not mentioned in the rules are given the KEEP status. This
means that you will never see them in the normal interviewing sequence.
However, they are always available from the Navigate menu. An unrouted
parallel block is the last block put on the route in the instrument. Other blocks
will not have access to it since the fields in the unrouted parallel block will come
after everything else. Thus if you wish to use a value from a parallel block in
another part of the instrument, you will have to route the parallel block before the
other blocks which will use it. You would do so with carefully considered IF
conditions, or perhaps put a KEEP status on it.

 Chapter 4: Blocks and Tables

Developer's Guide 193

Parameters and parallel blocks
Parallel blocks normally do not have to be put on the route in order to be
accessible during the interview. However, if you pass parameters to a parallel
block, then it is necessary to put it on the route. In these situations, you must
carefully consider the routing conditions to keep the parallel block from coming
on the route when you do not want it to do so. See the nonresponse and
appointment examples below.

The code below shows that the nonresponse parallel block is on the route only
when it makes sense to have it there.

IF (Household.Done = EMPTY) AND
 (HouseConclude.ThankYou = EMPTY) THEN
 HouseNonResp('HOUSEHOLD', HouseTransmit.DataReady)
ENDIF

Specifying text for parallel blocks in the DEP
You can specify text that will display in the Parallel Blocks dialog of the DEP.
By default, when parallel blocks are selected in the DEP, the parallel block name
or the identifier that is declared in the data model appears in the dialog box. You
can specify more descriptive text for the parallel block on the Data model
Properties dialog box, which is described in Chapter 3, section 3.8.

The names of parallels are stored in a file with a .bxi extension. In this file, the
system keeps track of the specified text for the parallels. Each time you prepare
the data model, the system adds or removes parallels, and keeps track of the text
that was specified.

4.9.1 Blocks chosen by menu
Though the method of block access through parallel blocks is complete and easy
to implement, there may be times when a sponsor will specify an alternative way
to do the same thing. A way to provide access to particular blocks without using
parallel blocks is to provide a menu at a field. At the menu field, the interviewer
chooses the block to execute at that moment. The execution of the blocks is
conditioned on the choice the interviewer makes in the menu field. A sample of
the code for this follows, from \Doc\Chapter4\menujump.bla:

Chapter 4: Blocks and Tables

194 Blaise 4.5

DATAMODEL MenuJump
 FIELDS
 Menu "Choose a module to execute now."
 : (Accountant "Accountant's module",
 Controller "Controller's module",
 Supervisor "Supervisor's module",
 Finished "Finished with enumeration")
 BLOCK BAccountant
 …
 ENDBLOCK
 BLOCK Bcontroller
 …
 ENDBLOCK
 BLOCK Bsupervisor
 …
 ENDBLOCK
 FIELDS
 Accountant : BAccountant
 Controller : BController
 Supervisor : BSupervisor
 RULES
 Menu
 IF Menu = Accountant THEN
 Accountant
 IF Accountant.Done = Continue THEN
 Menu := EMPTY
 Accountant.Done := EMPTY
 ENDIF
 ELSEIF Menu = Controller THEN
 Controller
 IF Controller.Done = Continue THEN
 Menu := EMPTY
 Controller.Done := EMPTY
 ENDIF
 ELSEIF Menu = Supervisor THEN
 Supervisor
 IF Supervisor.Done = Continue THEN
 Menu := EMPTY
 Supervisor.Done := EMPTY
 ENDIF
 ENDIF
 Accountant.KEEP
 Controller.KEEP
 Supervisor.KEEP
ENDMODEL

The IF-ELSEIF construction puts only one block on the route at a time. The
interviewer completes the module, then moves back to the field Menu to select a
new module. The KEEP statements after the IF-ELSEIF construction are necessary
to avoid losing data as Blaise normally clears all off-route data from the database
when the form is closed.

 Chapter 4: Blocks and Tables

Developer's Guide 195

4.10 Hierarchical Data Models

Many survey instruments have a hierarchical structure. An obvious example is a
household survey. You have the household at the highest level. Each household
has a number of characteristics, like composition, income, address, and so on.
Households consist of persons. Therefore, the second level in the hierarchy is the
person, and each person has some characteristics, like age, gender, and marital
status.

A hierarchical data model can have more than two levels. For example, the
persons in the household survey have a number of jobs, and for each job, perhaps
a number of locations. For each location, there might be several means of
transport.

Blaise allows you to build hierarchical data models using several methods. These
data models can have several or many levels.

• You can nest blocks within blocks.

• You can use arrays of blocks and arrays of blocks within other block arrays.
You can associate elements of one array with elements of another array. You
can do this in complex but very efficient ways if necessary.

• Parameters allow you to dynamically determine which values to pass into a
particular arrayed block.

• Blaise keeps track of which fields are relevant to any situation. Thus, in an
edit check, only the relevant fields are shown to the Data Entry Program user
when the edits are encountered during a data entry session. The interviewer
does not have to engage in complex navigation to fix a problem.

Hierarchical data model sample: The National Commuter Survey
The best way to learn how to build hierarchical data models is to inspect code.
The data model \Doc\Chapter4\ncs02.bla is a realistic if incomplete
example of a hierarchical household survey. This survey is called the National
Commuter Survey. In this survey, names and personal data for up to 10 members
of a household are gathered in a roster. Here we ask how many jobs outside the
home each individual has. After the roster is completed, we collect information
about the name of each employer for each respondent. For each
respondent/employer category, we collect information about work locations.
Depending on how you count, this is a three- or four-level rostering situation.

Chapter 4: Blocks and Tables

196 Blaise 4.5

The household roster is collected in its entirety before detailed information about
individuals and their work is collected. This means that the rostering in this
example is not purely a matter of nested blocks.

Let's look at two separate but related arrays. The example here is for the
household roster.

TABLE THousehold
 LOCALS
 I : INTEGER {looping counter for arrayed table}
 FIELDS
 Person : ARRAY[1..10] OF BPerson
 Done "Household roster finished?" : TContinue

 RULES
 FOR I := 1 to Address.HHSize DO
 Person[I]
 ENDDO
 Done
ENDTABLE
FIELDS
 Household : THousehold

The row of the household roster table is contained in BPerson. This example
allows up to 10 rows to be filled in, but only up to the value of HHSize.

The table here is for rosters of jobs and locations.

TABLE TPerson {Information about the nth person's workplace.}
 PARAMETERS
 IMPORT
 Whom : STRING
 WorkNum : INTEGER

 LOCALS
 J : integer

 FIELDS
 Work : ARRAY[1..5] OF BWork
 Done "Interviewer, is the workplace roster finished?" : TContinue

 RULES
 FOR J := 1 to 5 DO
 IF J <= WorkNum THEN
 Work[J](Whom, J)
 ENDIF
 ENDDO
 Done

ENDTABLE
FIELDS
 PersonNum : ARRAY[1..10] OF TPerson

 Chapter 4: Blocks and Tables

Developer's Guide 197

We see that the table PersonNum is arrayed up to 10 times. Within the table is an
array of row blocks, and if you were to inspect the code even further (bwork.inc
in \Doc\Chapter4), you would see that there is another block arrayed within the
row block. This is how you can have arrays nested within arrays.

4.10.1 Connecting arrayed blocks
The arrayed tables PersonNum[] are not nested within the household roster table
Household. Yet each table PersonNum[] must be associated with a corresponding
row of Household. This is done in this case at the data model level with the
following statements:

AUXFIELDS
 WorkNum : 0..10
 WorkName : STRING[30]
…

Household
FOR G := 1 TO 10 DO
 IF Household.Person[G].Job = YES THEN
 WorkNum := Household.Person[G].NumberJobs
 WholeName := Household.Person[G].FirstName + ' ' +
 Household.Person[G].SurName
 PersonNum[G](WholeName, WorkNum)
 ENDIF
ENDDO

Each PersonNum[G] table is associated with a person in the household roster,
namely, Household.Person[G]. We wish to pass information from the household
roster to the work rosters and have chosen to do this with parameters. For
convenience only, the Auxfields WorkNum and WholeName were created and
computed before each PersonNum[G] was called.

The data model \Doc\Chapter4\ncs03.bla carries the hierarchical example
even further. There are multiple instances of administrative blocks to take care of
individuals as well as the household level. For example, you can have an
appointment at the household level or at an individual level. It is possible to
schedule more than one appointment at a time for individuals. The individual
rosters are parallel blocks, which allow you to interview one person or several
people at one time.

Chapter 4: Blocks and Tables

198 Blaise 4.5

4.11 Selective Checking Mechanism and Instrument
Performance

Blaise is designed to handle the world's largest and most complex surveys and has
many features that allow it to do this. One of the main considerations when
designing such a system is the proper handling of the administration of the rules,
including routing, edits, IF conditions, and computations.

In a large instrument, there may be thousands of questions and thousands more
rules that govern their implementation. In such a data model, the constant
checking of all rules could overwhelm the computer. Blaise always checks all
appropriate rules. It does not always check all rules, but just the appropriate ones.

In order to know which rules to enforce, Blaise employs a selective checking
mechanism based on parameters and blocks. If the data model is set up properly,
this selective checking mechanism works extremely well.

A very large instrument with thousands and tens of thousands of fields, edits, and
computations can perform very well if it is programmed correctly. But if the same
instrument were constructed naively, it probably will perform poorly.

The discussion below briefly describes the selective checking mechanism and
then lists simple rules that, if followed, should result in an instrument that
performs well.

4.11.1 Performance and parameters
Blaise uses parameters to optimise the performance of the checking mechanism
during instrument use. By keeping track of parameters, both explicit and internal,
Blaise knows which blocks to check.

Parameters are sometimes declared explicitly by the developer. Other times
Blaise generates them. This happens when reference is made from within a block
to outside the block without explicitly declaring parameters to do this. Parameters
generated by Blaise are called internal parameters. You can see both internal and
explicit parameters in the Structure Browser.

From a performance point of view, all parameters keep track of information that
is being passed from one block to another. For example, in complex economic
surveys, it is not unusual to have 10, 20, 30, or more parameters being
administered for each block. If there are a lot of blocks, then it is possible that too
many parameters are administered.

 Chapter 4: Blocks and Tables

Developer's Guide 199

If you find that you have a large number of parameters being administered all at
once, there are some things you can do that are extremely effective:

• Add structure to the instrument. Blaise uses structure to know which
parameters to keep track of. That is, Blaise handles structured instruments
optimally. This means nesting blocks. If you have many blocks on a high
level, each with a lot of parameters, you can place some of them within other
higher level blocks. The fewer high-level blocks the better.

• Declare all locals and auxfields at the lowest level possible. By doing this you
accomplish two things: block independence, and you do not pass parameters
unnecessarily from one block to a lower one. This will save on parameter
administration and improve performance.

• Declare external fields from an external file at the lowest level possible. If
done this way, there will be no parameter administration on external fields,
which isn't needed because they are unchangeable.

• Sometimes you bring information into a block for the sole purpose of
providing context to the interview. For example, you might want to display a
respondent's name or identification number. You can use the field text at the
block level to hold this information. This information will be displayed at the
top of the InfoPane and will not be counted as a parameter that has to be
administered. For example:

BLOCK BTextDemo
 FIELDS
 TextTry "@/This is the question text.": STRING [1], EMPTY

ENDBLOCK
 FIELDS
 TextDemo "This is block level text for context.":
 BTextDemo

The question text display for the field TextTry will be:

This is block level text for context.

This is the question text.

• Use import parameters to pass information into a block if that information is

not going to be changed. Blaise knows that import parameters do not need the
same amount of administration as export or transit parameters.

Chapter 4: Blocks and Tables

200 Blaise 4.5

• Be careful about accessing elements of an array. Explicitly declare array
parameters and compute their value before calling the array. If array elements
are not explicitly declared, Blaise will declare internal parameters for all
possible array elements. This can mean that hundreds or thousands of
unneeded parameters are generated and administered. By explicitly declaring
parameters and computing their value before passing the values in this
situation, you will greatly cut down on the number of parameters that Blaise
keeps track of.

• Stop forward parameter checking with IF statements in the RULES section,
especially for major blocks that follow the present block or field. Blaise
always forward checks parameters that are currently on the route. If
thousands of questions are on the route, then their parameters will be
checked, even if the interview has not yet arrived at that point.

• If a field is used often in IF conditions, recast it once as a local, then use the
local in the IF conditions. This is because Blaise has much easier access to the
values of locals than to the values of fields.

• If there are edits between fields of different blocks, then put the edits at a
higher level than the two blocks. The edit will be invoked in a timely manner
and neither block will be burdened with parameter administration for the
fields in the edit.

To view internal parameters, open the data model in the Structure Browser as
described in Chapter 2. In the Structure Browser options, check to view internal
parameters. They will then be marked in the tree of the model with the letters GP.
You may find that you are passing a lot more information between blocks than
you thought.

4.11.2 Other performance gains
Other performance improvements may be achieved for reasons having nothing to
do with parameter administration.

• In a large table, you can break up the table with NEWPAGE in a LAYOUT
section. This will keep Blaise from redrawing the entire table, even the part
that is not displayed. A table of 100 rows may be better displayed with a
NEWPAGE every 20 rows. The default mode library file divides tables into
eight rows per page. For more information on the mode library file, see
Chapter 6.

 Chapter 4: Blocks and Tables

Developer's Guide 201

• Turn off the Ditto feature in the Data Entry Program configuration file if you
do not need it. (See Chapter 6.) With this feature on, two copies of the data
record are stored in memory.

4.12 Good Programming Practices

The following is a list of good programming practices that were mentioned in this
chapter:

• Use blocks often and well to speed instrument development.

• Use blocks to repeat code like a macro or subroutine.

• Use readable block names to make choices readable for the interviewer or
data editor when an edit is invoked.

• Use parameters when you need to pass values into and out of blocks in order
to make the blocks very general and reusable.

• Use import parameters as much as possible to cut down on parameter
administration.

• For large instruments, use blocks to add structure to the code. This will help
performance.

• Declare locals, auxfields, and external files at the lowest level possible. This
helps make blocks independent and improves efficiency.

• For extremely large tables, you may have to break up the table with NEWPAGE
key words in order to improve performance. You may also consider breaking
up extremely large tables into two or more tables by editing the modelib file.

• When you use INCLUDE statements, give the included files a standard
extension.

• Edit checks and computations between separate blocks should usually be
written at a higher level than the blocks. An exception is when you have
repeated a block several times through enumeration. In this latter case, it may
simplify maintenance if the edit is written within the last defined block.

• For your organisation, define special blocks that help with survey
administration. These include appointment and nonresponse blocks. These
blocks should work closely together. It is often helpful to test the instrument
with just the administrative blocks in place to make sure that this part works
the way you wish it to. See ncs01.bla for an example.

Chapter 4: Blocks and Tables

202 Blaise 4.5

4.13 Example Data Models

The following is a list of example data models and other files found in
\Doc\Chapter4 under the Blaise system folder. See the read.me file in this
folder for any last minute changes. These data models illustrate the points made
in this chapter. You can easily prepare and view them.

You will have to prepare the mylib.lib type library before preparing some of
these data models. There are several files in the folder with the .inc extension.
These are included files for some of the later data models.

 Chapter 4: Blocks and Tables

Developer's Guide 203

Figure 4-5: Example data models used in Chapter
File Name Description
commute7.bla Illustration with two simple blocks.

commute8.bla One defined block repeated several times through enumeration. Repeated
blocks are modified minimally with block-level text.

commute9.bla Adds to commute8 by introducing parameters for some edits in the block.

commut10.bla Adds to commute9 with parameters for text enhancement.

commut11.bla Has two separately defined blocks, with edits between the blocks defined
outside of the blocks.

commu11a.bla Modifies commut11 by putting edits between blocks into the last defined
block. The edits in this block refer to fields in the other block by direct
reference.

commu11b.bla Modifies commut11 by putting edits between blocks into the last defined
block, but this time using IMPORT parameters for the edits.

commut12.bla commut11 but with included files bperson.inc and bdistanc.inc.

commut13.bla Makes a table, with enumerated rows, out of commut12 and puts edits
between blocks at the table level.

commut14.bla A table, with arrayed rows, and shows how to put edits between blocks in a
FOR-DO loop at the table level.

commut15.bla Basic table definition. Also shows a table with unequal row lengths.

commut16.bla Shows a table with holes.

ncs01.bla Basic start to an elaborated example. Shows special administrative blocks
and parallel status.

ncs02.bla Adds hierarchical blocks and tables to ncs01. Up to 10 members of a
household are interviewed.

ncs03.bla Elaborates on ncs02 with additional instances of administrative blocks to
handle individual appointments, nonresponse, and so on.

test14.bla A small test instrument corresponding to commut14. This shows how use of
parameters can make it easy to test even deeply nested blocks.

distance.bla Example of a mini-data model used to develop and test for eventual use in a
larger data model.

menujump.bla Use of a menu at a field to determine which block to process at any time.

hh1.bla First of five ways to build a household roster.

hh2.bla Second of five ways to build a household roster.

hh3.bla Third of five ways to build a household roster.

hh4.bla Fourth of five ways to build a household roster.

hh5.bla Fifth of five ways to build a household roster.

hh6.bla Protecting a household grid.

Chapter 4: Blocks and Tables

204 Blaise 4.5

Developer's Guide 205

5 Special Topics

Chapters 3 and 4 covered the basic Blaise® language and much more. This
chapter covers features that are essential in some surveys but not needed in
others. Topics include hierarchical coding, external files, lookup coding, Blaise®
procedures, Dynamic Link Library (DLL), audit trail, multimedia language,
question-by-question aids, and the layout section.

5.1 Hierarchical Coding

Coding means to assign a numeric code that corresponds to a description of a
commodity, chemical, car, crop, or other kinds of items in a large list. Blaise
supports three kinds of coding: hierarchical, alphabetical lookup, and trigram
lookup. Some coding frames have a natural hierarchical nature and you can take
advantage of the structure. Examples of hierarchies in coding frames include:

• Classification of commodities, occupations, and enterprises

• Make, model, and body style for automobiles

• Region, sub-region, and towns for place names

When you code hierarchically, you proceed from high-level classifications to
low-level classifications. In doing so, you quickly narrow down the search,
eliminating thousands of inappropriate low-level codes right from the start.

You can combine hierarchical coding with the lookup coding techniques covered
below. For example, when coding automobiles, you can choose a make of car
through a hierarchical mechanism. Chevrolet is a make of car. Since Chevrolet
has many models, you can switch to lookup coding to search for the model name
and body style. If you do so after choosing Chevrolet as the make name, the
lookup coding mechanism searches for model names associated with Chevrolet
only. When you switch to the lookup mechanism, all of the lookup search
techniques (alphabetic, trigram, visual browsing) can be made available to the
coder.

In Blaise, the hierarchical coding frame is implemented as a special kind of
hierarchical enumerated type, called a classification type. You can store the

Chapter 5: Special Topics

206 Blaise 4.5

prepared classification type in a type library as documented in Chapter 3. You
invoke the hierarchical coding with a classify method that is attached to the field
to be coded.

5.1.1 Classification type
The hierarchical coding frame is implemented as a hierarchical enumerated type
in the type section or type library. The syntax, formally covered in the Reference
Manual, is best illustrated with an example showing enumerated tables.

LIBRARY FoodLib

TYPE
 Likes = CLASSIFICATION
 HIERARCHY
 Food = (
 Snacks = (
 Quiche,
 Pretzels,
 Peanuts),
 Drinks = (
 Juice,
 SoftDrink)),
 Fun = (
 Hardware = (
 Computer,
 Television,
 SoundSystem),
 Software = (
 Doom,
 Blaise,
 Lemmings))
 ENDCLASSIFICATION

ENDLIBRARY

Since the classification type is a series of nested enumerations, you can add the
code you want to use and a description:

TYPE
 Likes = CLASSIFICATION
 HIERARCHY
 Food (1) "Anything you eat or drink" = (
 Snacks (1) "Food you eat between meals"= (
 Quiche (1) "Delicious cheese tart",

etc.

If the description is present, the interviewer sees only the description in the
coding window. Otherwise the user will see the labels themselves.

 Chapter 5: Special Topics

Developer's Guide 207

Some coding frames have more complicated descriptions. From a hierarchical
coding frame for automobile makes, models, and body styles, the labels may be
quite long and complex, as shown in the following example:

TYPE
 Automobiles = CLASSIFICATION
 LEVELS
 Make, Model, Body_Style
 HIERARCHY
 American_Motors (1) = (
 Rambler_or_American (1) "AMER Rambler/American" = (
 _2dr_Sedan_or_HT_or_Coupe (2) "2dr Sedan/HT/Coupe",
 _4dr_Sedan_or_H (4) "4dr Sedan/HT",
 Station_Wagon (6) "Station Wagon",
 unknown_or_other_style (88) "unknown") ,
etc.

These three lines, taken from above, represent make, model, and body style levels
of this coding frame:

American_Motors (1) = (
 AMER_Rambler_or_American (1) = (
 _2dr_Sedan_or_HT_or_Coupe (2),

An American Motors Rambler that is a two-door sedan, hard top, or coupe has
code 1.1.2. This example uses labels such as AMER_Rambler_or_American to
represent the level being coded. Since these are identifiers, they must follow the
rules of identifiers for enumerated type. Special characters such as a space, '-', or
'/' are not allowed.

For this more complicated example, descriptive text in the classification type can
make things clearer for the coder. The following is an excerpt from the same
coding frame with shortened labels and descriptive text:

TYPE
 Automobiles = CLASSIFICATION
 LEVELS
 Make, Model, Body_Style
 HIERARCHY
 American_Motors (1) = (
 Rambler_or_American (1) "AMER Rambler/American" = (
 Auto_2dr (2) "2dr Sedan/HT/Coupe",
 Auto_4dr (4) "4dr Sedan/HT",
 Station_Wagon (6) "Station Wagon",
 Unknown (88) "unknown") ,
etc.

Chapter 5: Special Topics

208 Blaise 4.5

When coding, the coder would see AMER Rambler/American instead of
AMER_Rambler_or_American as in the preceding example.

5.1.2 Building the classification type
The syntax illustrated above can be awkward to type by hand, particularly for
large hierarchical coding frames. In any case, coding frames are rarely built up
from scratch. If they exist in a different format, you can use Manipula programs to
recast the frame into the needed syntax. For example, the coding frame above was
created from a file with format:

 1001 2 American Motors AMER Rambler/American
 2dr Sedan/HT/Coupe 65
 1001 4 American Motors AMER Rambler/American
 4dr Sedan/HT 69

where the second and fourth lines are continuations of the lines immediately
above.

Two Manipula set-ups that convert a source file to the two example classification
types above are carclass.man and carclas2.man. Certain characters that
appeared in the original file are not allowed within labels in the classification
type. They are:

• A blank space

• A slash (/)

• A hyphen (-)

• A full stop or period (.)

• A comma (,)

• A plus sign (+)

• An ampersand (&)

• A quotation mark (")

In addition, a label cannot start with a number. The Manipula programs replace
these characters with an appropriate substitute such as the underscore character,
as shown in the following example:

HoldMakeName := REPLACE(HoldMakeName, '/', '_')

 Chapter 5: Special Topics

Developer's Guide 209

Here, the character / is replaced with the underscore character _. For this reason,
the labels in the classification type should not have spaces but instead have
underscore characters. An example (with codes deleted):

American_Motors
 AMER_Rambler_or_American
 _2dr_Sedan_or_HT_or_Coupe

In the second classification type example above, greater effort was taken to have
more succinct labels. The corresponding labels are (with codes and descriptions
deleted):

American_Motors
 Rambler_or_American
 Auto_2dr

Dynamic coding frames
Some coding frames are very stable and are changed infrequently. Others,
however, can change as the survey progresses. If this is the case, you can give the
coding frame the DYNAMIC attribute to turn off the type checking. This allows
you to change the frame without changing the data definition. If you declare a
coding frame to be dynamic, then you have to give a maximum length to the
numeric code. In this example of coding automobiles, up to two digits are
reserved for the make, three digits for the model, and three digits for the body
style.

The levels have full stops between them, for example:

20.032.88

This frame has a maximum length of nine characters. To make it dynamic, the
heading of the classification type would be:

TYPE
 Automobiles = CLASSIFICATION DYNAMIC[9]

Level names
You can give names to the levels of the hierarchy and use the level names in an IF
condition. In the automobile coding example, the levels are named as:

Chapter 5: Special Topics

210 Blaise 4.5

TYPE
 Automobiles = CLASSIFICATION
 LEVELS
 Make, Model, Body_Style

Suppose a field named Car has type Automobiles. In the main data model, you
can use the level name in a condition as shown:

IF Car.Make = Chevrolet THEN

You cannot use the level names directly in an assignment.

5.1.3 Classify method for coding a field
So far, we have only discussed how to create the coding frame in Blaise as a
classification type. You still have to declare a field in terms of the type and give it
a classify method. In the automobile example above, the classification type
created had the name Automobiles. In order to use this classification type you
have to define a field in terms of it. For example:

FIELDS
 AllCodes "Code the car." : Automobiles

In the RULES section, you use the CLASSIFY instruction to invoke the interactive
hierarchical coding.

RULES
 AllCodes.CLASSIFY

When the user (or coder) arrives at the field AllCodes, the coding mechanism is
activated by pressing the Insert key or by entering the starting value of a code.
Once in the hierarchical coding mechanism, the coder can easily proceed down
the hierarchy with page and arrow keys until the proper code is obtained.

As an example, the data model carcodes.bla, its classification types, and
related external files are found in the subfolder \Doc\Chapter5\Classify.
The text file read.me gives complete instructions on how to prepare the data
models and libraries.

 Chapter 5: Special Topics

Developer's Guide 211

When you run carcodes.bla, enter a 2 in the field Methods on the first page.
You will arrive at the page that demonstrates hierarchical coding. In the field
AllCodes2, press Insert and the following coding dialog box appears:

Figure 5-1: Hierarchical coding dialog box

The coding dialog box is in the form of a tree. By expanding and collapsing the
tree (using the mouse or arrow keys), you can choose any of the makes of cars.
Expand the tree at Cadillac and the tree unfolds to a lower level of the hierarchy
for model. Expand CADI Eldorado and the lowest level of this hierarchy, body
style, appears.

Figure 5-2: Coding dialog box

Select 4dr Sedan/HT, then press the Enter key. Code 19.5.4 appears in the field
AllCodes2. Press Enter again and the cursor will move to the field Confirm2. The

Chapter 5: Special Topics

212 Blaise 4.5

fields ShowString, LongName2, and Confirm2 are imputed from an external file
and give the interviewer a chance to confirm that the correct code was chosen.
(External files are discussed later in this chapter.)

Selective use of the coding mechanism
You can invoke the coder under certain circumstances and not others by using the
IF-ELSEIF or IF-ELSE construct:

IF CAPI THEN
 AllCodes.CLASSIFY
ELSE
 AllCodes.ASK
ENDIF

Coding from an open question
Open questions in Blaise are designed to collect verbatim responses from
participants during the survey. If you later want to code this information, you can
have a subject matter expert code the responses when the form arrives at the
home office. In the DEP, you cannot have the open-question window and the
coding window visible at the same time. But you can read in the response of the
open question into the coding question as shown:

AllCodes "Code the car. @/ The car description =
 @Y^OpenCar@Y" : Automobiles

You can control the size and location of the coding window. You can set the
coding window for the bottom half of the computer screen so that the text from
the open question appears in the top half of the screen.

As an example, in the data model carcodes.bla, enter 5 in the Method field on
the first screen and you will see an example of coding from an open question.
When you enter a text string such as 'I drive a Cadillac Eldorado' in the OpenCar
field, the text for the field AllCodes4 displays this text string for the benefit of the
person doing the coding later.

5.1.4 Using the code later in the data model
When a code is entered you often want to do two things:

• Verify that the code is correct.

• Bring some related data into the data model.

 Chapter 5: Special Topics

Developer's Guide 213

Verifying a hierarchical code
To verify that a code is correctly entered, display the labels of the code in the text
of a confirmation question. For example, where the field Car is of classification
type Automobiles:

FIELDS
 Confirm "Let me confirm the make and name of the car.
 They are ^Car" : (Yes, No)

An edit could be written where an answer of No would prevent the coder from
moving on until the code is correct.

Accessing external data based on a hierarchical code
Hierarchical coding is implemented through a type, not an external file as lookups
are. When you arrive at a code strictly from a hierarchical search, you do not
automatically have access to other data associated with the hierarchical code as
you may have in lookups. You can associate the hierarchical code with data from
an external data model using the SEARCH and READ methods. The external data
model must have a primary key of the same classification type as the code field.
Then you can use the code field (in this case, Car) as a search parameter from an
external file. For example:

CarList.SEARCH(Car)

Use a READ statement to read the contents of the record into the external field
CarList. For example, if you have an external file with some rating for a model of
a car, you could bring information in from the external file for further edit checks.
In the earlier example, where code 19.5.4 was selected, an external file filled in
the fields LongName2 and BodyStyle2.

Converting between code and string
If you need to manipulate the value of the code, use the function CLASSTOSTR.
This will convert the code to a string value. Then you can use other string
functions to do what you need to do. To convert a string to a code, use the
function STRTOCLASS.

Chapter 5: Special Topics

214 Blaise 4.5

5.2 Retrieving Information from External Files

External files can hold information that changes over time or between regions. If the
external file holds a large number of records, you can access the one you need very
quickly based on data already collected during the interview. For some applications,
appropriate use of external files will cut down on the maintenance of the main data
model. The uses of external files are many. Examples include:

• Verifying that codes input during an interview are valid.

• Comparing the answers for different periods in a longitudinal survey.
Therefore, you need a facility to read information from the previous period.

• There is information associated with the sampling frame that is needed within
the form. For example, expansion factors may depend on stratum code and
these expansion factors are multipliers in some edits. This frame sampling
information is held in an external data set.

• After coding a commodity, information related to that commodity must now
be brought into the data set. This could be for further computations and edit
checks or because the summary system requires the newly collected data to
be with previous data.

• Running an instrument that must behave in different ways for different
regions. You can use an external file to hold specifications for each region.
Then the main data model will adjust routes, edit limits, and even question
text to correspond to the specification for the region where it is being used.

5.2.1 External file requirements
There are a few requirements of an external file. For the externally held data, you
need:

• An external Blaise data model with a primary key to describe the external
data file.

• An external ASCII data file, a Blaise data file, or a relational database using
the Blaise OleDB interface. For an ASCII text data file the Blaise data model
must describe the fields exactly —their position, width and data type. A
Blaise data file may be built by converting the ASCII data using Manipula.
Accessing a relational database such as Oracle®, Microsoft® SQL Server™, or
Microsoft Access® is possible when the Blaise Component Pack is installed.
More information on the Blaise OleDB interface can be found in section 2.2.9
and in the Control Centre Help under Reference Manual > BOI > BOI
Externals.

 Chapter 5: Special Topics

Developer's Guide 215

Note that there is a distinction between the external data model and the external
data file. In the main data model, you need to refer to both the external data
model and the external data file. For the main data model you need:

• A USES section at the start of the main data model to name the external data
model.

• An EXTERNALS section in the block where the external file is read. The
EXTERNALS section names the external data file.

In the same block as the EXTERNALS section, you locate and read a data record in
the external file. To do this you need:

• The SEARCH method to locate a record in the external file.

• The READ method to read the selected record in the external data file.

5.2.2 The external data model and data file
Reading an external data file in standard ASCII format has advantages. The
translation step to a Blaise data file is eliminated, it is often easier to update or
change the data file, and for small datasets there is likely to be little impact on
performance. For larger datasets (based on the number of records and/or the
length of the records) some performance impact can occur during the initialisation
step.

Using a Blaise data file for external files is likely to be of value when the size of
the dataset is large or when it does not change frequently, or if the data have been
collected using Blaise.

If the external information is in a different format, bringing it into the Blaise
format means specifying an external Blaise data model. Usually this is very
simple.

We will start with a short example from the National Commuter Survey. You
want to describe the respondent's commuting trips as a sequence of modes of
transport. For example, a respondent may walk 1 kilometre to the metro station,
take the subway to another station, catch a bus there, and finally walk another 1/2
kilometre to his office. His sequence of modes would be walk, subway, bus, and
walk. You do not know in advance what the sequence of modes will be. However,
for each mode of transport you have a particular phrase for proper wording of
questions and edit limits for average speed. An ASCII file of this external
information might look like this (from modelist.asc):

Chapter 5: Special Topics

216 Blaise 4.5

 1take the public bus 10 80
 2take the private bus 10 80
 3take the tram or trolley 10 80
 4subway, metro, or light rail 15 65
 5take the train 25 90
 6take your car by yourself 25 85
 7take the car or van pool 25 85
 8take your motorcycle 25 95
 9take your bicycle 15 40
10walk 5 15
11take other means of transport 0150

A description of the external file might be written as:

Columns Length Description
 1 - 2 2 Mode number {unique id}

 3 – 32 30 Proper question phrase

33 – 34 2 Lower edit limit km/hour

35 – 37 3 Upper edit limit km/hour

A Blaise data model corresponding to this description of the external file could
be:

DATAMODEL ModeList
 PRIMARY
 ModeNumber
 FIELDS
 ModeNumber : 1..11
 ProperPhrase : STRING[30]
 Lower : 0..50
 Upper : 1..200
ENDMODEL

A Manipula program to bring this ASCII file into a Blaise data set would be
(modelist.man):

USES
 Modelist

INPUTFILE
 InFile : Modelist ('modelist.asc', ASCII)

OUTPUTFILE
 OutFile : Modelist ('ModeList', BLAISE)

Manipula is covered in Chapters 7 and 8, including how to check and run this set-
up.

 Chapter 5: Special Topics

Developer's Guide 217

One can also use ASCII files with fields separated by a comma or other delimiter,
with data like the following:

1,”take the public bus”,10,80
2,”take the private bus”,10,80
...
11,”take other means of transport”,0,150

In the Manipula specification of the INPUTFILE one uses the SETTINGS section
to state the delimiter and field separator characters.

USES
 Modelist

INPUTFILE
 InFile : Modelist ('modelist.asc', ASCII)
 SETTINGS Delimiter=’”’ Separator=’,’
OUTPUTFILE
 OutFile : Modelist ('ModeList', BLAISE)

Use of an external data model to state specifications
If you do not already have an ASCII file of the external information, you can use
a Blaise data model to record the information. The data model above is adequate
for this but you can take the idea further. With a few enhancements, you could
give the data model to a subject matter specialist to fill in the question wording
and edit limits. You could also put a few edits in the external data model itself,
such as ensuring that the field Lower is always less than Upper. An enhanced data
model is modelist.bla found in \Doc\Chapter5\External.

The main data model used in this example is commut17.bla in
\Doc\External\Chapter5. This data model has a table for modes of transport
where it is unknown ahead of time which mode of transport will be mentioned by
the respondent at any time. It is necessary to read an external file to retrieve a
question phrase and edit limits appropriate to the mode stated.

5.2.3 Referring to the external data model and data file
From the main data model you indicate which external data model and data file to
read. You name the external data model in the USES section and the external data
file in the EXTERNALS section. The external data model and data file are treated
separately because the data model specification may apply to two or more data
files with the same description.

Chapter 5: Special Topics

218 Blaise 4.5

Uses section
State the name of the external data model in the RULES section at the beginning of
the main data model. Associate a MetaInformation identifier (ModeModel below)
with the data model name. It is the MetaInformation identifier that is used further
in the main data model. In the following example, the external data model name
is ModeList.

DATAMODEL Comute17 "National Commuter Survey, ex 17."
 . . .
USES
 ModeModel 'ModeList'

If the external metadata file is held in another directory you can use a path:

DATAMODEL Comute17 "National Commuter Survey, ex 17."
 . . .
USES
 ModeModel 'c:\TranInfo\ModeList'

The system will look for the external metadata file modelist.bmi and read the
external data descriptions from it. That is, all the information about the external
data model, such as fields, block names, and data definition, is available from the
metadata file. It uses the identifier ModeModel to refer to this metadata.

You can omit the file specification if the name of the identifier is the same as the
name of the metadata file. One MetaInformation identifier can refer to two or
more external data files as long as they all have the same data definition.

Externals section
Name the external Blaise data file in a RULES section. Associate an external field
(ModeFile below) with the MetaInformation identifier from the RULES section
(ModeModel below) and the external data file (ModeList below). For our example
this section looks like the following if a Blaise data file is used:

BLOCK BDistance {where the external data are used}
 . . .
EXTERNALS
 ModeFile : ModeModel('ModeList')

 Chapter 5: Special Topics

Developer's Guide 219

If an ASCII data file is used then the section looks like:

BLOCK BDistance {where the external data are used}
 . . .
EXTERNALS
 ModeFile : ModeModel('ModeList.asc', ASCII)

Again, you can refer to a path if necessary:

EXTERNALS
 ModeFile : ModeModel ('c:\TranInfo\ModeList.asc’, ASCII)
 SETTINGS Delimiter=’”’ Separator=’,’

If you do not include a data file name, the same name as the metadata file name
will be used (this is the default).

The external field identifier (in the above example, ModeFile) refers to one
external data record. Once the external file is read, the external field will hold one
external data record with all fields in that record. In our example, these fields
include ModeFile.ModeNumber, ModeFile.ProperPhrase, ModeFile.Lower, and
ModeFile.Upper. You can refer to the contents of these fields in the RULES after
the external SEARCH and READ are accomplished.

Define externals at the lowest level
The RULES section with the SEARCH and READ methods must be located in the
block where the file searching and reading are done. This should be the block
where the external data are to be used. In other words, declare the RULES section
at the lowest level possible. This is especially valuable in large arrays where you
might have to read many external files.

Take the example of an arrayed table with many rows. The best way to handle
this is to read the external file from within the row block definition. By doing this
there will be no parameter administration associated with the external file read,
and instrument performance will be maintained. See Chapter 4 for a discussion of
parameter administration and performance.

Restricting the number of external fields
If you are only interested in part of the data in the external data record, you can
restrict the information that is read from the file. To do this, sum up the fields of
interest in the specification of the external field. For example, if your external
data model consists of two block fields, one with identification information and

Chapter 5: Special Topics

220 Blaise 4.5

one with demographic information, and you are only interested in the
identification, you can specify:

EXTERNALS
 TownData: TownName
 ('C:\TownDir\Towns', Identification)

When the system processes a record in the external data file, only the fields in the
block Identification will be read. Note that you cannot refer to fields that are not
mentioned in the specification. By default all fields are read and available.

You can specify more than one field to be read. If you have several fields of
interest you can sum them up in the specification. For instance:

EXTERNALS
 TownData: TownName
 ('C:\TownDir\Towns', Identification, Income)

5.2.4 Accessing the external data with file methods
So far you have set up references to the external data model and data file with the
USES and EXTERNALS sections. Now you must use file methods to actually read
the external data. At this point you only need to use the external field from the
EXTERNALS section. The file methods that you can use are SEARCH, READ, OPEN,
and RESULT.

To activate a file method, specify the external field name followed by a dot and
the desired method. For the READ method that would be:

ModeFile.READ

To read data, the SEARCH and READ methods are used together.

SEARCH method
The SEARCH method searches the external data file for a record based on the
external file primary key. SEARCH takes as many parameters as there are fields in
the primary key of the external file. In the example there is one field in the
external primary key. The search instruction is:

ModeFile.SEARCH(Mode)

 Chapter 5: Special Topics

Developer's Guide 221

Mode refers to a field, auxfield, parameter, or local in the block in the main data
model. In our example, Mode is a field that the interviewer enters. When Mode
gets a value, the SEARCH method tries to locate the primary key with the same
value in the external file and returns the result of the attempt: successful or not
successful. It also prepares the system for reading the data record.

Usually you use the SEARCH method with some IF conditions.

RULES
 Mode
 IF ModeFile.SEARCH(Mode) THEN
 {more code}
 ENDIF

In the example above, if the SEARCH is successful, then more code will be
executed. In this example, there is no 'way out' for the interviewer (there is no
ELSE or ELSEIF before the ENDIF where the SEARCH is done). It is up to the
developer to make sure that there are records in the external file for each possible
value of Mode.

Since the SEARCH method returns the result of the search, you can give the user
an alternative if an external record cannot be found. For example, in a different
context where we want to impute a town name based on a town code, we allow
the interviewer to type in a name if one cannot be found.

IF TownData.SEARCH(TownCode) THEN
 TownData.READ
 TownName := TownData.TownName
 TownName.SHOW
ELSE
 TownName.ASK
ENDIF

If the search is not successful, the town name will be asked and the interviewer
can type in a town name.

There may be more than one primary key field in the external data file. In that
case you must specify a value for all the keys, separated by commas. For
example, if the external data file has two key fields, one for region and one for
mode of transport, the SEARCH might look like:

IF ModeFile.SEARCH(RegionNum, Mode) THEN

Chapter 5: Special Topics

222 Blaise 4.5

You can use constants, fields, auxfields, locals, function results, and expressions
as parameters of the SEARCH method. The only restriction is that the values
should be of the proper type.

You can use the contents of the external file to perform a direct edit check. In the
example below, we want to ensure that the number of modes of transport
corresponds to an entry in the external file. If it does not, this indicates a data
entry error. A direct check with a search would look like:

ModeFile.SEARCH(Mode)
 "Mode of transport not found, re-enter the number."

Here you are not actually reading the external data record. You are merely
checking to see if it exists. If it does not exist, then there is an error.

READ method
Data can be read with the READ method after a successful search:

RULES
 Mode
 IF Mode <> EMPTY THEN
 IF ModeFile.SEARCH(Mode) THEN
 ModeFile.READ
 ENDIF
 {more code}
 ENDIF

In this example, one external data record will be read. The information in the
record can be addressed with dot notation. Since the record represented by
ModeFile has fields ProperPhrase, Lower, and Upper, refer to these fields with
ModeFile.ProperPhrase, ModeFile.Lower, and ModeFile.Upper. For example:

FIELDS
 Distance "^Respondent, what is the distance you travel when you
 ^ModeFile.ProperPhrase to work?" : 0.0..200.0

SIGNAL
 AvgTime > ModeFile.Lower

In the first part of the example, ModeFile.ProperPhrase is used to modify
question text in the main data model. In the second part, the external field name
ModeFile.Lower is used to state an edit limit.

 Chapter 5: Special Topics

Developer's Guide 223

RESULT method
The RESULT method supplies information about the result of the last SEARCH or
READ operation. RESULT returns the value zero if the operation was successful,
and an error code if it was not. For instance:

TownData.READ
IF TownData.RESULT = 0 THEN
 TownName := TownData.Name
ELSE
 TownName.ASK
ENDIF

If you use the SEARCH method, there is usually no need to check the result.

OPEN method
You can use the OPEN method to switch to another data file. OPEN takes one string
parameter, the name of the data file. The string may include a drive letter and a
directory:

ModeFile.OPEN('C:\TranList\ModeLst2')

You can also use a string type expression, as in:

TownData.OPEN(CurrentDir + '\TownDir\' + TownFileName)

where CurrentDir, TownDir, and TownFileName are locals, fields, or auxfields
and are computed with the current directory name, the TownDir directory, and the
town file name before the above instruction is executed.

Longitudinal surveys
For longitudinal or panel surveys, there are two ways that data are typically
collected and edited. The first is where the user is allowed to collect and edit
current data only. The second is where the user must be able to update previous
data.

In the first case, you can develop your instruments along the lines described
above. The external Blaise data models are those that you used for data collection
or editing in previous periods. In this situation, you have access to the information
from the previous data models but cannot change it.

Chapter 5: Special Topics

224 Blaise 4.5

In the second case, when you want to be able to edit previously collected data,
you might consider building one data model that can handle all survey periods.
You can use routing and conditional statements to control access to the current
data. For example, if you are in period three, you can allow access to periods one,
two, and three, but not to period four.

Large external files
Very large files can be read. The primary key of the external data file is an index
to the data records. This index will ensure that the required record is read very
quickly. You often use large external data files in association with some coding
scheme. There, it is not unusual to have tens of thousands of records in the
external file. Blaise can handle these situations easily.

Many external files
You can have an unlimited number of external files from a main data model.
When you have many external data models you must be sure that you have
enough memory to handle all the data models and data files.

Large external data model
You can refer to a large external data model in the RULES section. However, you
must make sure that you have enough memory to hold the main data model (.bmi
file and other information), the external data model (.bmi file), one or two data
records for the main data model, and one data record for the external data file. If
you do not have enough memory, you can extract information from the large
external data file into a smaller external data file with a smaller external data
model description.

5.3 Lookups

Lookups are used to browse external files for information or for coding. You look
up information in the external file by scrolling with arrow and page keys, using an
alphabetic search, or using a powerful text locating method called trigram search.
Lookups can be used in combination with hierarchical coding.

Lookups differ from external file searching and reading covered above. With
external file searching and reading, you give or calculate search criteria within the
main instrument to find a single record in the external file. The user may not even
know that information was obtained from an external source. With lookups, a

 Chapter 5: Special Topics

Developer's Guide 225

window opens that displays the external file and the user is given several ways to
find the proper record.

With external file lookups you can:

• Code commodities, automobile names, place names, job descriptions, and
similar lists through text-string searches.

• Quickly locate the needed record even in files of thousands of records.

• Give the interviewer information. This might be to answer common
respondent questions or to look up descriptions. The lookup is always
available if implemented in a parallel block. (Another way to give the
interviewer information is through question-by-question aids covered later in
this chapter.)

Lookups can be used in place of or in combination with hierarchical coding.

5.3.1 External lookup file
The external lookup file must have at least one key field. It will almost always
have at least one descriptive text field to aid the user in locating records. The
lookup file may have a primary key, one or more secondary keys, or both.

• If the lookup file has only a primary key, then the lookup mechanism offers a
window on the lookup file in the order of the primary key. Usually the
primary key is a numeric identifier and does not offer much help to the user
who is trying to find a particular record.

• The lookup is most powerful if the lookup keys are text descriptions of the
records being sought. These are usually secondary keys. For example, the
make and model names of a car are good descriptions of the records being
sought and make good search fields.

• If there is a primary key together with secondary keys, then the secondary
keys but not the primary key are offered as lookup keys. You might still find
it advantageous to declare a primary key if you want to offer the external
lookup file as a regular external file for the search and read methods. This is a
good idea if you combine hierarchical coding with a lookup.

An example of an external data model used in lookups is
\Doc\Lookup\Chapter5\Lookup\carlist.bla.

Chapter 5: Special Topics

226 Blaise 4.5

DATAMODEL CarList {Used both as an external data model for the main data
 model LOOKCARS.BLA and for the Manipula program which
 populates this Blaise data base.}

 SECONDARY
 Long_Name = LongName
 TrigramMakeAndModel = LongName (TRIGRAM)

 FIELDS
 MakeName : STRING[18]
 LongName : STRING[34]
 BodyStyle : STRING[25]
 ModYear : INTEGER[2]
 AllCodes : STRING[7]

ENDMODEL

Once you prepare this data model you can populate it using the Manipula
program carlist.man. This will place 1,276 records in the external file. After
data are read into this external Blaise data model, prepare the main data model
lookcars.bla. With these two data models you can experiment with lookups,
especially with the different kinds of keys in the external model carlist.bla.

From the main data model lookcars.bla we want to record the make, model,
and body style of the respondent's automobile. A unique code is held in AllCodes,
and this is the number we need in our main data model. However, AllCodes is not
a good search field because it contains just code numbers. One of the fields in the
external data model, LongName, contains both a short make name and a model
name. For example:

CHRY New Yorker/E-Class
FORD Mustang/Mustang II

Since LongName would make a good search field, we will use it to find the
proper code in AllCodes. This can be with either an alphabetic search or a trigram
search.

5.3.2 Keys in the external lookup file
The way the keys are defined in the external data model determines how the user
can search the lookup file. Since there is no primary key in this external lookup,
only the secondary keys are offered as lookup keys to the user. A normal
secondary key (Long_Name in this example) is used for the alphabetic search. A
secondary key that is given the TRIGRAM designation (TrigramMakeAndModel in
this example) allows a powerful search based on text strings. In carlist, since

 Chapter 5: Special Topics

Developer's Guide 227

the secondary key Long_Name is listed first, it is offered to the user first when the
lookup is invoked.

Alphabetic search
In an alphabetic search, the user starts to type in the name of the description as it
is spelled. For example, in order to code the Ford Mustang above, she starts
typing in Ford. As she types, the lookup file scrolls to the correct area of the
external file. Just typing in the letter F will get her to the entries that start with F.
Usually typing in the first few letters will get the user close to the correct external
record. From there she can use the arrow keys to put the cursor on the right code.

The way this external file is set up, LongName will usually be an adequate
alphabetic key as long as the respondent knows the make of the car. In order to
use LongName for an alphabetic search, declare it as a normal secondary key. For
example:

SECONDARY
 Long_Name = LongName

Trigram search
The trigram search is based on three-character text strings found anywhere in the
search field. For example, the word Blaise consists of the trigrams #BL, BLA,
LAI, AIS, ISE, and SE#, where # represents word boundaries. An algorithm
inspects the trigrams based on what the coder is typing. As she types more, the
number of qualifying records is reduced.

For example, out of 1,276 entries in the external file carlist, the search is
narrowed to 11 entries when you type in the model name nova. The word being
searched for does not need to be at the start of the search field, and in fact, it
usually is not. After narrowing the search, the arrow keys or the mouse can again
be used to choose the final code. The use of arrow keys often will be necessary
for this example because part of what we are coding, the body style, is not
included in the search field LongName.

To implement the trigram method, give the secondary key the TRIGRAM
designation. For example:

SECONDARY
 TrigramMakeAndModel = LongName (TRIGRAM)

Chapter 5: Special Topics

228 Blaise 4.5

Note that in order to use trigram searching the external data file must be a Blaise
database with a trigram secondary key. ASCII external files and OLEDB files
cannot be used.

Combination of keys
You can use combinations of keys. For example, you can use one field for a
trigram search and another for an alphabetic search. You can even declare one
external field to be both a trigram field and an alphabetic field, as is done in
carcodes.bla.

If you use combinations of keys, you can switch between keys in the lookup
window. First select the lookup key you want to use from the Key Type box in the
lookup window. Then type the search string in the Search box. In our example,
we have searched on TOYT:

Figure 5-3: Alphabetic lookup coding dialog box

In the preceding example, since 4-Runner is at the top of the Toyota list, the code
is easily found using the alphabetic string.

A more robust method is to use the trigram search. You could search on 4-
Runner, and find it in the list. In the following example, even though the string
4Runner was typed without the hyphen, the system still takes the user to the code
because the search string is close enough to the target string 4-Runner.

 Chapter 5: Special Topics

Developer's Guide 229

Figure 5-4: Trigram lookup coding dialog box

5.3.3 Declaring the external file lookup from the main data model
You need a USES section and an EXTERNALS section to identify the external
lookup file. For example:

USES
 CarList

In the externals section you should define a reference:

EXTERNALS
 CarList : CarList

Lookup as an information source
In the RULES you invoke the method LOOKUP by adding this key word to the
external file name. The following will merely offer the lookup as an information
source:

Chapter 5: Special Topics

230 Blaise 4.5

RULES
 CarList.LOOKUP

Lookup for coding
If you are using the lookup file to code a value, then you need a field in the main
data model that can accept the code:

{In main data model.}
FIELDS
 AllCodes "Code the car. " : Automobiles

The type of field in the main data model must be the same as the type of field that
holds the code in the lookup file. For example, if the type of field in the lookup
data model is a string, then the field in the main data model must also be a string.

Piping symbol
To use the lookup as a coding mechanism, in the rules you need to associate a
field in the main data model with one in the external data model. This is done
with the piping symbol '|'.

RULES
 AllCodes | CarList.LOOKUP.AllCodes

When the user arrives at the field AllCodes and starts typing, the lookup table will
appear. She can then use various means to arrive at the proper code.

The piping symbol '|' is an alternative way to put a value into a field. In this case it
is used to obtain a value from the external lookup. It is also used in the classify
method below. Piping is further documented in the Reference Manual under
piping.

5.3.4 Accessing related data in the lookup record
Lookups are a way of searching data records in an external file. Once a record is
chosen, then all the data in the external record are held in the external field. In
this example, the external field is CarList. Through CarList the fields of the
chosen record are available to the main data model. You compute external values
into the main data model as shown:

 Chapter 5: Special Topics

Developer's Guide 231

IF CarList.LongName <> EMPTY THEN
 LongName := CarList.LongName
 BodyStyle := CarList.BodyStyle
ENDIF
LongName.SHOW
BodyStyle.SHOW

This example brings in external data to the main data model for the coder to
confirm whether the correct code was entered. The fields LongName and
BodyStyle are displayed on the screen. The interviewer can see if he has coded
correctly. The IF condition is necessary in case you bring up the record after
storing it. Without the IF condition, an EMPTY would be computed into the fields
LongName and BodyStyle upon recalling the form into memory after storing it.
This is because the external field CarList would be EMPTY the second time
around, as it is filled in from the external lookup file only when the lookup is
manually activated and a record is chosen.

5.3.5 Giving the lookup a starting value
You can give a starting value for a search in the lookup file. This is best
illustrated by an example:

FIELDS
 SVLook "Starting characters of the description. "
 : STRING[10] {for alphabetic search}
 SVTriGram "Any character string in the description"
 : STRING[10] {for trigram search}

In the RULES you feed the value of SVLook into the search key as in the following
examples. Remember that the lookup file has secondary keys Alfa and Tri. If you
want to feed a value for an alphabetic search:

AllCodes | CarList.LOOKUP(Long_Name:= (SVLook)).AllCodes

If you want to feed a value for a trigram search:

AllCodes | CarList.LOOKUP(TrigramMakeAndModel := (SVTrigram)).AllCodes

If you want to feed a value for a trigram and alphabetic search with the alphabetic
being the first used:

Chapter 5: Special Topics

232 Blaise 4.5

AllCodes | CarList.LOOKUP(Long_Name := (SVLook),
 TrigramMakeAndModel:= (SVTrigram)).AllCodes

Feed values into the search based on information gathered previously in the
instrument. For example, if you already know the make of the car from another
question, there is no sense in making the coder enter that piece of information all
over again. You can, however, back up in the coding mechanism and enter a
different high-level code.

5.3.6 Using hierarchical coding and lookup together
For complicated or large coding frames, the combined use of the hierarchical and
lookup coding methods is very powerful and elegant. The coder can use
hierarchical coding to code the first levels and then switch to lookup coding to
complete the job. When switching from hierarchical to lookup, only the entries in
the chosen class are available to the coder. In other words, you can use the
hierarchical coding to narrow down the search before switching to lookup coding.

Linking hierarchical and lookup coding
The link between hierarchical and lookup coding is based on the common use of
the same classification type. In the example of automobile coding, there is a
classification type called Automobiles. In the main data model, the field to be
coded is defined in terms of Automobiles. In the lookup data model, you also
define the field, which holds the code in terms of the classification type
Automobiles. Then you use piping in the rules of the main data model to link the
two fields together.

AllCodes.CLASSIFY | CarList.LOOKUP.AllCodes

In this case, if the coder switches from hierarchical coding to lookup coding, the
code value from lookup coding will be piped into the field AllCodes in the main
data model.

Open nature of combining the coding methods
When the hierarchical and lookup coding methods are combined, you are giving
the coder an option. In a particular case, she may use only the hierarchical
mechanism, only the lookup mechanism, or both.

If you wish to bring other external information into the data model where a
combination of hierarchical and lookup coding is used, it is best not to rely on an

 Chapter 5: Special Topics

Developer's Guide 233

external computation that assumes the lookup mechanism was invoked, because
the coder may have coded the entry entirely through the hierarchical method. In
this case it is better to use the SEARCH and READ methods to ensure that you can
access the external information regardless of the coding method the coder used.

5.4 Blaise Procedures

Blaise procedures can execute repetitive tasks within or between applications.
With them you can:

• Invoke a common form of an edit check to many different fields.

• Add edits to an instrument after it is in production without changing the data
definition.

• Encode complex tasks of several or many lines of code and apply them to
different situations.

• Ask for information from a user without storing it.

• Call an alien procedure to do something. (Alien procedures are explained
later in this chapter.)

The structure of a Blaise procedure is like that of a block except that the key
words PROCEDURE and ENDPROCEDURE are used instead of BLOCK and
ENDBLOCK. You can use all language elements including fields, auxfields, locals,
parameters, computations, arrays, checks, and signals.

A Blaise procedure is used with explicitly declared parameters to pass data back
and forth with the main application. None of the procedure's data are stored. This
means you can use fields within a Blaise procedure and not take up space in the
Blaise data set. Checks or signals that are invoked from a Blaise procedure can
influence the cleanliness status (dirty, suspect, clean) of the application, but the
result of each check or signal in the Blaise procedure is not stored. Consequently,
you can use a procedure to add checks or signals to your application after it is
already in production. This will maintain data set compatibility between the new
and old instruments (if you did not already reserve space for additional edit
checks with the key word RESERVECHECK, as discussed in Chapter 3). A
generalised Blaise procedure can be tested and maintained in its own file and used
in different applications without modification.

Chapter 5: Special Topics

234 Blaise 4.5

The following is an example of a simple procedure returning a percentage:

PROCEDURE Percentage
 PARAMETERS
 Part, Total: REAL
 EXPORT Perc: INTEGER
 RULES
 Perc:= ROUND(Part / Total * 100)
ENDPROCEDURE
...
Income Rent
Percentage(Rent, Income, RentPerc)
RentPerc.SHOW
...

A procedure can be used to display information on screen and to retrieve input
from the user.

PROCEDURE DispInfo
 PARAMETERS
 Info: String
 FIELDS
 Dinfo "^Info": String[1], EMPTY
ENDPROCEDURE
...
Name Address
DispInfo('The name and address just entered are: '+ Name + ' '+ Address)
...

Note that you can call the procedure directly; you do not have to specify a field
first. A procedure does not link to data, so no information will be stored.

A more elaborate example of a procedure can be found in the file M_of_20.prc
in the folder \Doc\Procedure\Chapter5. It is shown in the following
example:

 Chapter 5: Special Topics

Developer's Guide 235

 PROCEDURE M_of_20
 PARAMETERS
 IMPORT
 N, M : INTEGER
 EXPORT
 Choices : STRING

 LOCALS
 L, K, J,
 PrevL : INTEGER

 FIELDS
 LetterN, LetterM, NumEligible : 0..20, EMPTY
 NumChosen : 0..20, EMPTY
 Choice : 1..20, EMPTY
 OrderedArray, RandomArray : ARRAY [1..20] OF 1..20, EMPTY

 RULES
 Choices := ''
 IF M > 0 AND N > 0 THEN
 LetterN := N
 LetterM := M
 FOR L := 1 TO LetterN DO
 OrderedArray[L] := L
 ENDDO
 NumEligible := N
 Choice := 1 + RANDOM(N)
 FOR K := 1 TO LetterM DO
 RandomArray[K] := OrderedArray[Choice]
 Choices := Choices + STR(RandomArray[K], 3)
 NumChosen := NumChosen + 1
 NumEligible := N - NumChosen
 FOR J := Choice TO NumEligible DO
 OrderedArray[J] := OrderedArray[J + 1]
 ENDDO
 OrderedArray[NumEligible + 1] := EMPTY
 Choice := 1 + RANDOM(NumEligible)
 ENDDO {K = 1 TO LetterM}
 ENDIF {M > 0 AND N > 0}
 ENDPROCEDURE

This procedure returns m unique elements out of 20 in a random sampling without
replacement scheme. This procedure is necessary because the Blaise RANDOM
function returns only one value at a time, and two or more successive invocations
of RANDOM will not ensure uniqueness.

The procedure above is quite complex. There are many explanatory comments in
the file itself if you are interested in the details of the code. The above example
illustrates that you can have very complex instructions in a procedure. Once
programmed and tested, the procedure is available to other instruments without
modification.

Chapter 5: Special Topics

236 Blaise 4.5

5.5 Dynamic Link Libraries

Blaise supports the use of Dynamic Link Libraries (DLLs) to perform a process
or action that is not currently available in Blaise itself. By using DLLs, Blaise can
perform many tasks that would not normally be possible.

A DLL can be considered an external subroutine that can be called by the Blaise
Data Entry Program (DEP) or Manipula. The Blaise instrument passes
information to the DLL, and the DLL acts on the information and passes the
modified or new information back to the instrument.

The following are some uses of DLLs:

• You can read data from a serial port. For example, you could scan the bar
codes of food products found on the shelves of a respondent. Another use
would be to use electronic callipers to measure fruit or machine parts. For this
you would use an alien router.

• For a self-interviewing application, you can use a totally different interface
for the respondent than the one the interviewer uses. For this you would use
an alien router.

• You can run a third party program for a specialised kind of coding. For this
you would use an alien procedure.

• If you have some administrative survey data stored in a database system, you
can read data from that package directly. For this you would use an alien
procedure.

DLLs are a specialised technique that should be used only by a knowledgeable
computer programmer. It is not for the novice. Valuable things can be
accomplished with DLLs, but it is also possible to create problems with your
application. You must thoroughly test the whole system with the DLLs before
using them in production.

This section provides a brief overview of how DLLs are used in Blaise,
information on how to create a DLL to be called from the DEP, and information
on how to create a Blaise alien procedure and a Blaise alien router to call a
specified DLL procedure.

This section only covers the very basics. Examples distributed with the Blaise
system will offer much more detail. All files and examples mentioned in this
chapter are available for review and are listed at the end of this section.

 Chapter 5: Special Topics

Developer's Guide 237

Also, a more in depth version of the Blaise DLL documentation is distributed
with the Blaise system.

5.5.1 Two types of alien DLL reference
Blaise uses the key word ALIEN to refer to a DLL. There are two broad types of
alien references. Those that perform calculations are called alien procedures and
those that ask questions are called alien routers.

Alien procedure
An alien procedure is executed every time it is invoked in the RULES section of
the data model when run in the DEP, or in the MANIPULATE section of Manipula.

The structure of an alien procedure is similar to a Blaise or Manipula procedure,
with the exception that it includes the ALIEN key word. This enables the alien
procedure to call a specified DLL procedure and pass parameters to it.

An alien procedure can only access and modify parameters passed to the
procedure.

Alien router
An alien router is executed whenever the focus in the DEP (that is, the cursor) is
placed on a field located within a Blaise block where an alien router statement is
defined.

The structure of an alien router is similar to a Blaise block with the exception that
it includes the ALIENROUTER key word. This enables the Blaise block to call a
specified DLL procedure and pass a block of information to it. The block of
information is comprehensive and detailed. The information includes every field
declared in the Blaise block, as well as parameters passed to the block. Alien
routers are much more powerful than alien procedures and are normally used to
ask a question.

An alien router can access and modify parameters passed to the block, as well as
all fields included within the related Blaise block.

5.5.2 Delphi™ DLLs and other DLLs

DLLs must be developed using Borland Delphi (version 2 or later) because
Blaise only delivers the DLL interface in the form of a Delphi unit. The Delphi

Chapter 5: Special Topics

238 Blaise 4.5

DLL itself can communicate with DLLs that are developed using a different
development environment, such as C++. Thus to call a third party system written
in C++, you would construct a small Delphi DLL to call the C++ DLL.

5.5.3 Delphi™ DLL procedure called by a Blaise DEP alien procedure
A Blaise alien procedure executes a Delphi DLL procedure every time the alien
procedure is invoked in the RULES section. DLL procedures executed by an alien
procedure can only access and modify parameters passed to the Blaise alien
procedure.

5.5.4 Delphi™ DLL procedure called by a Blaise DEP alien router
A Blaise alien router executes a DLL procedure whenever the focus of the DEP
(the cursor) is placed on a field located within a Blaise block where an alien
router statement is defined.

5.6 Audit Trail

An audit trail in Blaise is a record of field values and movements in the
instrument. Because Blaise is a Windows® system in which a mouse or other
pointing device can be used, the audit trail must keep track of the position of the
cursor resulting from the use of the pointing device as well as movements from
the keyboard keys. It records the values of each field as the cursor enters and then
again when the cursor leaves the field. In addition the action that brought the
cursor to the field and then action related to exiting the field is captured. The
audit trail also records when certain function keys are used, such as Show All
Remarks or Help.

Audit trail uses
An audit trail has many uses in computer assisted surveys.

• It can be used for methodological research, in usability testing, and other
efforts to understand how the user—the interviewer, editor, or respondent in a
self-administered application—interacts with the instrument.

• An audit trail can tell you how interviewers are using the system, even in
remote Computer Assisted Personal Interviewing applications. For example,
if one wanted to learn how well a complex series of questions are functioning,
an examination of audit trails could reveal patterns of backing up and

 Chapter 5: Special Topics

Developer's Guide 239

correcting answers, the use of help or other special functions, or the time
spent on different items.

• An audit trail can help in the testing and debugging of the Blaise code.
Complex flow through an instrument can be checked. Reported problems
from software testers can be examined with much greater detail and precision
rather than relying on problem reports.

• If there is a problem with the data files that the Hospital utility cannot fix, the
audit trail can offer a means of data recovery.

The most compelling reason for using an audit trail is quality control. Audit trails
provide an exact, in depth record of virtually everything that happens during a
Blaise interview or editing session. Every instance where data in a Blaise
instrument may be entered or changed by a user is recorded precisely.

Audit trail in Blaise
An audit trail is implemented through an external audit trail DLL. To implement
the audit trail DLL for a survey, you need to:

• Supply an audit trail DLL.

• Tell the system where the audit trail DLL can be found.

• In the audit trail DLL, give the name of the audit trail and its location.

Note that there is a distinction between the audit trail DLL and the audit trail
itself. The audit trail DLL enables an audit trail to be written. The audit trail itself
records the user actions.

Since the audit trail is implemented by means of an external audit trail DLL, it is
possible for you to create your own custom DLL and change how you format it or
what information to record.

5.6.1 Audit trail DLLs
Two audit trail DLLs and their source code are supplied with the Blaise system.
The first is audit.dll and its source code file is audit.dpr. This DLL stores
all audit trail information for all forms in the database in one file, and is shown
below. These files are located in the \Samples\Dll\Audit folder of the Blaise
system folder.

The second audit trail DLL is auditkey.dll, and its source code file is
auditkey.dpr. This DLL stores each form's audit trail information in a separate

Chapter 5: Special Topics

240 Blaise 4.5

file, in the format PrimaryKey.adt. Auditkey.dll and auditkey.dpr are in
AuditKey.zip in the \Doc\Chapter5\Audit folder. For more information,
refer to the readme.txt file that is in the zipped file.

Both DLLs are written in Borland® Delphi™. You can write another audit trail
DLL in this or any other system that can produce a DLL. You can use the
supplied DLLs as they are, you can modify them, or you can create your own
audit trail DLL. Because you can create or modify your own DLL, you have great
flexibility in determining the information that you record and the format of that
information.

Audit.dll supplied with Blaise
The following is an analysis of Audit.dll that is supplied with Blaise:

First there is some initialisation code:

library audit;

uses
 SysUtils,
 DepAudit;

var
 AuditFile: Text;

The unit DepAudit.Pas contains the definition of the interface objects used by the
audit trail DLL procedures.

The following function allows the DLL to record various user actions such as the
use of an arrow or page key or a mouse click:

 Chapter 5: Special Topics

Developer's Guide 241

function CauseToStr(const Cause: Integer): String;
begin
 case Cause of
 AUDIT_PREVFIELD: Result := 'Previous Field';
 AUDIT_NEXTFIELD: Result := 'Next Field';
 AUDIT_MOVELEFT : Result := 'Move Left';
 AUDIT_MOVERIGHT: Result := 'Move Right';
 AUDIT_MOVEUP: Result := 'Move Up';
 AUDIT_MOVEDOWN: Result := 'Move Down';
.
.
.
 AUDIT_SENDFORM: Result := 'Send form';
 AUDIT_AUTODIAL: Result := 'Auto dial';
 AUDIT_EXECUTE: Result := 'Execute';
 else
 Result := 'Unknown-'+IntToStr(Cause);
 end;
end;

Here, the status of a field is made available to the audit trail.

function FieldStatusToStr(const FieldStatus: Integer): String;
begin
 case FieldStatus of
 1: Result := 'Normal';
 2: Result := 'Don''t Know';
 3: Result := 'Refusal';
 end;
end;

The following procedure writes a date and time stamp and the contents of the
string constant s to the audit trail:

procedure WriteToAudit(const s: String);
begin
 try
 writeln(AuditFile, '"'+FormatDateTime('c', Now) + '",', s);
 except;
 end;
end;

Chapter 5: Special Topics

242 Blaise 4.5

The following procedure initialises the audit trail session. This is where you can
open the audit trail file. The bits of code such as {$I+} are compiler directives in
Delphi™:

procedure AuditTrailInitialization(const AuditInitialization:
 TAuditInitialization); export; stdcall;
var
 AuditName: String;
 ExtensionLen: Integer;
begin
 ExtensionLen:=
 length(ExtractFileExt(AuditInitialization.MetaName));
 AuditName:= ExtractFileName(AuditInitialization.MetaName);
 AssignFile(AuditFile,
 ExtractFilePath(AuditInitialization.DataName)+
 Copy(Auditname,1,length(AuditName)-
 ExtensionLen)+'.adt');
 {$I-}
 Append(AuditFile);
 {$I+}
 if IOResult <> 0 then
 begin
 {$I-}
 Rewrite(AuditFile);
 {$I+}
 end;
 if IOResult = 0 then
 begin
 WriteToAudit('"Start Session"');
 end;
end;

The next procedure is used to close the session. This is where you can close the
audit trail file.

procedure AuditTrailFinalization(const AuditFinalization:
 TAuditFinalization); export; stdcall;
begin
 try
 WriteToAudit('"End Session"');
 CloseFile(AuditFile);
 except
 end;
end;

The next procedure records the opening of a form and the key of that form.
Because not every form needs to have a primary key, the value of the internal key
is also passed to the procedure. When a new form is started, the values of the keys
will be empty.

 Chapter 5: Special Topics

Developer's Guide 243

procedure AuditTrailEnterForm(const AuditEnterForm:
 TAuditEnterForm); export;stdcall;
var
 s: String;
begin
 s := '"Enter Form:' + IntToStr(AuditEnterForm.InternalKey) +
 '"';
 s := s + ',"Key:' + AuditEnterForm.PrimaryKey+'"';
 WriteToAudit(s);
end;

The next procedure records the closing of a form and the key of that form.
Because not every form needs to have a primary key, the value of the internal key
is also passed to the procedure.

procedure AuditTrailLeaveForm(const AuditLeaveForm:
 TAuditLeaveForm); export;stdcall;
var
 s: String;
begin
 s := '"Leave Form:' + IntToStr(AuditLeaveForm.InternalKey) +
 '"';
 s := s + ',"Key:' + AuditLeaveForm.PrimaryKey+'"';
 WriteToAudit(s);
end;

The following procedure records a reason for leaving a field, the value and the
status of the field that was left, and the name of the field that was left:

procedure AuditTrailLeaveField(const AuditLeaveField:
 TAuditLeaveField); export; stdcall;
var
 s: String;
begin
 s := '"Leave Field:' + AuditLeaveField.FieldName + '"';
 s := s + ',"Cause:' + CauseToStr(AuditLeaveField.Cause) +
 '"';
 s := s + ',"Status:' +
 FieldStatusToStr(AuditLeaveField.FieldStatus) + '"';
 s := s + ',"Value:' + AuditLeaveField.FieldValue+'"';
 WriteToAudit(s);
end;

Chapter 5: Special Topics

244 Blaise 4.5

The following procedure records the name of the field that is entered and the
value of the field when the field is entered:

procedure AuditTrailEnterField(const AuditEnterField:
 TAuditEnterField); export; stdcall;
var
 s: String;
begin
 s := '"Enter Field:' + AuditEnterField.FieldName + '"';
 s := s + ',"Status:' +
 FieldStatusToStr(AuditEnterField.FieldStatus) + '"';
 s := s + ',"Value:' + AuditEnterField.FieldValue+'"';
 WriteToAudit(s);
end;

The following procedure records audit trail actions such as moving to the next
field or pressing the Home key. It also records changing a remark.

procedure AuditTrailAction(const AuditAction: TAuditAction);
 export; stdcall;
var
 s: String;
begin
 s := '"Action:' + CauseToStr(AuditAction.Action)+'"';
 if AuditAction.FieldName <> '' then
 begin
 s := s + ',"Field:' + AuditAction.FieldName + '"';
 end;
 case AuditAction.Action of
 AUDIT_REMARKCHANGED: s := s + ',"Remark:' +
 AuditAction.Value + '"';
 AUDIT_SETLANGUAGE: s := s + ',"Language:' +
AuditAction.Value + '"';
 AUDIT_EDITTYPE: s := s + ',"Value:' + AuditAction.Value
+ '"';
 AUDIT_OWNMENUENTRY_DLL: s := s + ',"DLL-info:' +
AuditAction.Value + '"';
 AUDIT_OWNMENUENTRY_EXE: s := s + ',"Exe-name:' +
AuditAction.Value + '"';
 AUDIT_OWNMENUENTRY_PARALLEL: s := s + ',"Parallel:' +
AuditAction.Value + '"';
 AUDIT_EXECUTE: s := s + ',"Command:' +
AuditAction.Value + '"';
 end;
 WriteToAudit(s);
end;

These exports statements make the procedures accessible by the DEP, enabling it
to write the information to the audit trail. The seven procedures that are shown in
the following sample are necessary for the audit trail to work. If you choose to
modify or write your own DLL, you should use the same procedure names as
below, keeping the same case for all characters.

 Chapter 5: Special Topics

Developer's Guide 245

exports
 AuditTrailInitialization index 1,
 AuditTrailFinalization index 2,
 AuditTrailLeaveField index 3,
 AuditTrailEnterField index 4,
 AuditTrailAction index 5,
 AuditTrailEnterForm index 6,
 AuditTrailLeaveForm index 7;

begin
end.

For each session of the DEP:

• The procedures AuditTrailInitialization and AuditTrailFinalization are called
once.

• The procedures AuditTrailEnterForm and AuditTrailLeaveForm are called once
for each form used in the DEP.

• The procedure AuditTrailEnterField is called when a field receives the focus.

• The procedure AuditTrailLeaveField is called when a field that has the focus
loses the focus.

• The procedure AuditTrailAction is called when the user performs some kind
of action (for instance, when he invokes the help).

! Remember that the information above is only an example of an
implementation of an audit trail. The example produces a readable trail of
what went on during a DEP session. In a production environment,
'readability' is perhaps less an issue. By defining a standard record layout
for each situation that has to be written, the audit trail can be made much
smaller, thus consuming less disk space.

5.6.2 Invoking the audit trail DLL
Invoke an audit trail for a survey by making two entries in the mode library file.
The mode library file is a system file that controls behaviour and display settings
in the DEP. The default system file is modelib.bml, and you can edit this file or
create other mode library files. Editing this file is covered in depth in Chapter 6,
and we only explain the audit trail setting in this chapter.

To invoke an audit trail, open the Mode Library Editor (select Tools Modelib
Editor from the Control Centre menu) and open a .bml file. From the tree view on
the left, select the Style–Options settings. The Audit trail section appears on the
right side of the panel.

Chapter 5: Special Topics

246 Blaise 4.5

Figure 5-5: Audit trail setting in mode library file

• To turn the audit trail on, select the Make audit trail box.

• In the Audit DLL box, specify the audit trail name and its path.

The information for the audit trail can also be set in the DEP configuration file.
See Chapter 6 for more information.

! Note that the location of the audit trail itself is determined by the contents
of the DLL. In the example, this is done in the procedure
AuditTrailInitialization.

5.6.3 Contents of the audit trail file
The contents and format of the audit trail are determined by the audit trail DLL
you write. The summarisation of the audit trail information is another topic
altogether. Manipula can be used to sort through and organise the information
into a report.

An example of the audit trail file produced with the audit trail DLL supplied with
Blaise is shown:

5/28/98 5:04:23 PM Start Session
5/28/98 5:04:23 PM Enter Form:0, Key:
5/28/98 5:04:23 PM Enter Field:ID, Status:Normal, Value:
5/28/98 5:04:29 PM Leave Field:ID, Cause:Next Field,
 Status:Normal, Value: 10
5/28/98 5:04:29 PM Enter Field:Person.FirstName, Status:Normal,
 Value:
5/28/98 5:04:35 PM Leave Field:Person.FirstName, Cause:Next Field,
 Status:Normal, Value:Roger
5/28/98 5:04:35 PM Enter Field:Person.SurName, Status:Normal,
 Value:
5/28/98 5:04:39 PM Leave Field:Person.SurName, Cause:Next Field,
 Status:Normal, Value: Linssen
5/28/98 5:04:39 PM Leave Form:3, Key:10

Every indented line is a continuation of the line above it. The indentation in this
example is for display purposes only. In the real audit trail file, the lines would
continue to the right.

 Chapter 5: Special Topics

Developer's Guide 247

You can see where the contents of each line are specified in the audit trail DLL
listing above. For example, the date and time stamp comes from the procedure
WriteToAudit. You know the value of a field when the cursor enters the field and
the value of the field when the cursor leaves the field. For example, at 5:04:29
p.m. the cursor entered the field Person.FirstName, where it had an empty value.
At 5:04:35 p.m. the field Person.FirstName was left with the value Roger.

The audit trail file is a text file that can be processed by Manipula programs. Two
such programs are supplied that correspond to this audit trail example. These are
auditsummary.man and repopulate.man.

• Auditsummary.man provides a summary of the contents of the data entered.
It keeps only the last value of any field and deletes all other lines.

• Repopulate.man generates a form-specific Manipula program called
Repop.man that, on a form-by-form basis, can rewrite a data record if data
have been lost due to a system crash or another cause.

Check the files for further documentation. If you modify the audit trail format,
you might have to modify the Manipula programs as well.

5.6.4 Miscellaneous audit trail information

Turning the audit trail on and off
If an audit trail is implemented for the DEP session, you can turn it on and off by
using several methods.

You can use two different mode library files, in which case you will end up using
two different versions of the data model's .bdm file (the mode library settings are
contained in the .bdm file). This is not very efficient.

Another and probably better way to do this is to use a DEP configuration file to
override the audit trail settings of the mode library file. In this case, the mode
library file would have the audit trail turned on, and the DEP configuration file
would have it turned off. Since the DEP configuration file is external to the
instrument, you do not have to re-prepare the instrument in order to turn the audit
trail off.

Another way to turn off the audit trail is to remove or rename the audit trail DLL.
If the name of the audit trail DLL is incorrect, the audit trail is turned off.

As the audit trail records every movement and all beginning and ending values of
cells that are visited, a large amount of data can be collected, even for one

Chapter 5: Special Topics

248 Blaise 4.5

interview. Be sure to test thoroughly to make sure recording audit trail
information has no adverse effect on performance or the available disk space.

While audit trails have their uses in methodological research and for tracing
problems, many organisations do not use them once an application has been
thoroughly tested and evaluated. This is due to the amount of collected data that
have to be archived and managed. Also, you have to find someone to analyse all
this information.

5.7 Multimedia Language

Blaise supports multimedia through an extension of its language feature.
Multimedia capabilities include the use of audio, graphics, and video. You can
use these multimedia capabilities in many ways.

• You can implement audio Computer Assisted Self-Interviewing, also called
audio-CASI. A respondent listens to questions, usually through headphones,
as the text is displayed on the screen. Audio-CASI facilitates self-
administered surveys by enabling subjects with limited reading skills to fully
understand the questions. This approach is often used for surveys that ask
questions considered to be sensitive.

• Graphics can be used to test a respondent’s recognition of images, such as
traffic signs.

• Video can be used to provoke respondent reaction to various video clips, such
as public health messages.

Blaise plays and displays standard Windows® multimedia files--.WAV for audio,
.BMP, .ICO, .WMF, or .EMF for image, and .AVI for video. Creation of these
files is done outside of Blaise using other tools.

5.7.1 Implementing the multimedia capability
To implement multimedia capabilities you need to:

• Declare a multimedia language in the instrument.

• For each field where multimedia capability is used, use one or more of the
key words SOUND, IMAGE, VIDEO, or ERROR. Because they appear between
double quotes in a field language, they are not parsed during preparation. The
syntax checker will not find any misspellings.

 Chapter 5: Special Topics

Developer's Guide 249

• For each of the key words SOUND, IMAGE, or VIDEO, refer to a sound,
graphic, or video file. For the key word ERROR, refer to a sound file.

• If necessary, adjust the display size and position on screen for graphics and
video files. You can also use the key words STRETCH, NOSTRETCH, LEFT, TOP,
CENTRE, HEIGHT, WIDTH, and REPEAT.

• Indicate the number of the multimedia language in the mode library or DEP
configuration file, and set other settings as needed.

• Supply or create the multimedia files.

5.7.2 Declaring the multimedia language
In the data model, declare a multimedia language.

LANGUAGES = ENG "English",
 MML "Multimedia Language"

The code MML and the description Multimedia Language have no special
significance except that they help reviewers of the instrument understand that this
is the language where multimedia is implemented.

5.7.3 Multimedia key words in the multimedia language
Once the multimedia language is declared, use one or more of the key words
SOUND, IMAGE, VIDEO, or ERROR in that language for each field. The following
example is for a question on alcohol use:

Alcohol "The next question is about alcohol."
 "IMAGE(party.wmf)" : TContinue;

The key word IMAGE is a function with a file name as an argument. The image
that is the file party.wmf will be displayed.

The following sample question will play a sound file:

AlcoholAge "How old were you when you had your first drink of alcohol
 other than a few sips?" MML "SOUND(daq035.wav)" : 0..99

When the respondent reaches the field AlcoholAge, the sound file daq035.wav
plays at the same time as the question is presented on the screen.

Chapter 5: Special Topics

250 Blaise 4.5

The MML acronym in the example above is not needed because the second
language in the field declaration is known to the system as the multimedia
language. In the preceding example, the question is displayed at the same time it
is spoken. In the following example, the MML acronym is needed because the
displayed language is missing:

AlcoholAge MML "SOUND(daq035.wav)" : 0..99

The respondent will hear the sound file, and thus the question, but will not see the
question displayed.

Use ERROR to play a sound file when a range error occurs:

FIELDS
 "How far do you have to travel to work each day?"
 MML "SOUND(HowFar.wav) ERROR(TooFar.wav)" : 0..500.0

The respondent will hear the sound file if the answer is outside the range 0..500.0.

STOPONKEY or NOSTOPONKEY can be used in the multimedia language to control
whether to play a sound or video item completely or stop playing as soon as a key
is pressed. Use STOPONKEY to stop the playing of sound or video when a key is
pressed. Conversely, NOSTOPONKEY forces the sound or video to play to
completion before moving the cursor to the next field.

AlcoholAge MML "SOUND(daq035.wav, NOSTOPONKEY)" : 0..99

Use STRETCH, WIDTH, and HEIGHT to indicate the size of an image or video file.
Use NOSTRETCH to override the multimedia stretch setting in a modelib or DEP
configuration file. Use LEFT, TOP, and CENTRE to indicate the position of an
image or video file on the screen. Use REPEAT to repeat the instructions in the
media text.

For example:

IMAGE(hello.bmp,STRETCH,LEFT=20,TOP=10,HEIGHT=200,
 WIDTH=400)

VIDEO(speedis.avi,STRETCH(1.5),CENTRE) REPEAT

In the preceding code, the image file hello.bmp is stretched to 200x400 pixels,
and is displayed with an upper-left position of 20,10. The video file

 Chapter 5: Special Topics

Developer's Guide 251

speedis.avi is stretched to 1.5 times its original size, is displayed in the centre
of the screen, and will be repeated over and over.

5.7.4 Multimedia settings in the mode library file
You need to indicate the number of the multimedia language in the mode library
file and specify other multimedia settings as needed. Editing the mode library file
is covered thoroughly in Chapter 6, and we explain only the multimedia settings
here.

Select Tools Modelib Editor from the Control Centre menu, and the Mode
Library Editor opens. Select the Toggles settings on the tree view on the left, and
then select the behaviour mode to which you want to apply the multimedia
settings. Then select the Multimedia tab, as shown in the following example.

Figure 5-6: Multimedia settings in the Mode Library Editor

Set the following as needed:

• Media language. Specify the number of the language used for multimedia as
stated in your data model. For example, if you have three languages listed in
the LANGUAGES section and Multimedia is the third one listed, the media
language would be 3.

• Delay time. This setting is for images only. Specify the number of
milliseconds between the presentation of the images.

• Stop on key. Select to allow the user to stop a sound file from playing by
pressing a keyboard key. If this is not checked, the user can still stop the file
using a menu command.

Chapter 5: Special Topics

252 Blaise 4.5

• Auto play. Select to have the file begin playing automatically when the user
comes to that field.

• Stretch. If checked, a picture or video file will take on the values in the
Display height and Display width boxes. If unchecked, the file will display as
its default size, regardless of the values in the height and width boxes.

• Display height and Display width. Specify the height and width, in pixels, of
a picture or video file in the DEP window. This applies only if the Stretch box
is checked.

• Media panel border. Select to display a border on the panel on which
multimedia files are displayed.

• Media on InfoPane. Select to have pictures displayed as part of the InfoPane.
If you do not select this option, pictures will appear in a separate window.

• Error message file name. Specify the name of a sound file (.wav) which will
be played when an error occurs.

5.7.5 Other multimedia considerations
Since multimedia is implemented through the language feature, by default it will
appear in the language-switching dialog box and the interviewer might switch to
it accidentally, and the text multimedia syntax might be displayed.

This can be disabled. Using Projects Datamodel properties Languages you
can specify which of the defined languages will be accessible for the interviewer
in the DEP. These languages are accessible in the language dialog or via the
previous and next language command in the DEP. By clearing the check box in
front of the multimedia language identifier in the lister the text for that language
will not be seen on the screen.

Switching multimedia along with spoken languages
Suppose we want to have an instrument in two languages. Consider the following:

LANGUAGES = ENG "English",
 FRA "French",
 MML "Multi Media Language"

The display of the question text is taken care of with the English and French
language declarations above. Since there is only one multimedia language, the
toggling between the two languages for the audio must be done through string
fills. For example:

 Chapter 5: Special Topics

Developer's Guide 253

LOCALS
 FillSound : STRING

FIELDS
 AlcoholAge "How old were you when you had your first
 drink of alcohol other than a few sips?"
 "Quel âge aviez-vous quand vous avez
 bu votre premier alcohol?"
 MML "^FillSound": 0..99

The string local FillSound can represent the name of a file. You use the key word
ACTIVELANGUAGE to determine which file should be played.

RULES
 . . .
 IF ACTIVELANGUAGE = ENG THEN
 FillSound := 'SOUND(alc_ENG.wav)'
 ELSEIF ACTIVELANGUAGE = FRA THEN
 FillSound := 'SOUND(alc_Fra.wav)'

 ENDIF
 AlcoholAge

In the example, the file alc_ENG.wav plays English speech while the file
alc_FRA.wav plays French speech.

Audio fills
You can have audio fills. Consider the following:

LOCALS
 FillSound1, FillSound2, FillSound3, FillSound4 : STRING

FIELDS
 ChildDrink "How old was ^HeShe when you discovered
 that ^HeShe was drinking?"
 "Quel âge avait-^HeShe quand vous avez
 decouvert qu'^HeShe buvait?"
 "^FillSound1 ^FillSound2 ^FillSound3
 ^FillSound2 ^FillSound4" : 10..20, RF

For the multimedia language, there are five parts of the question, each represented
by a string local FillSound1 through FillSound4, where FillSound2 is played
twice. To play the audio in the appropriate language, you need the following text
computations:

Chapter 5: Special Topics

254 Blaise 4.5

RULES
 . . .
 IF ACTIVELANGUAGE = ENG THEN
 FillSound1 := 'SOUND(Howold.wav)'
 FillSound3 := 'SOUND(discover.wav)'
 FillSound4 := 'SOUND(drinking.wav)'
 IF Gender = Male THEN
 HeShe := 'he'
 FillSound2 := 'SOUND(he.wav)'
 ELSEIF Gender = Female THEN
 HeShe := 'she'
 FillSound2 := 'SOUND(she.wav)'
 ENDIF
 ELSEIF ACTIVELANGUAGE = FRA THEN
 FillSound1 := 'SOUND(QuelAge.wav)'
 FillSound3 := 'SOUND(decouvre.wav)'
 FillSound4 := 'SOUND(boire.wav)'
 IF Gender = Male THEN
 HeShe := 'il'
 FillSound2 := 'SOUND(il.wav)'
 ELSEIF Gender = Female THEN
 HeShe := 'elle'
 FillSound2 := 'SOUND(elle.wav)'
 ENDIF
 ENDIF
 ChildDrink {finally we ask the question}

5.8 Question-by-Question Help

In complex surveys you often need to provide the interviewer or respondent with
an explanation of terms or phrases used in the question. This is commonly called
question-by-question help, or Q-by-Q help.

There are two ways to do this in Blaise. The first is to link to the WinHelp utility.
The second is to put help text in a help language in Blaise itself.

An advantage of using the WinHelp utility is that the Q-by-Q text can be written
outside of the Blaise data model. Thus the Blaise developer does not have to
worry about typing or importing this text. A subject matter specialist can type this
text in a word processor at the same time the instrument is being developed. Also,
the help text does not add to the size of the prepared .bmi file.

 Chapter 5: Special Topics

Developer's Guide 255

5.8.1 Using WinHelp
In WinHelp, to link topics to fields in the DEP:

• specify a topic identifier in the fields definition which identifies the topic in
the WinHelp file

• set a toggle that enables the link to WinHelp, and

• create WinHelp files.

Settings in Blaise when using WinHelp
There are a few things you have to set in Blaise when you use WinHelp. Because
WinHelp is topic based, you have to tell WinHelp which topic to display by
specifying a topic identifier.

There are three types of identifiers that can be used to link to topics in the
WinHelp file:

• Help language field text. The contents of the field text of the help language
defined for a field will be used as a topic identifier for the WinHelp system.

• Field tag. The contents of the defined field tag will be used for the help.

• Field name. The name of the field, without the block path, will be used as the
help topic identifier. Because a field always has a name, you must define a
topic in the help file for each field.

A topic identifier must start with a letter, but can include letters, digits, spaces,
and other characters. If you choose question help in the DEP, the system
determines the topic identifier for the current field. These are all set in the mode
library file in the Mode Library Editor.

Using the Blaise help language for topic identifiers
Using the Blaise help language for topic identifiers is usually the preferred
method of linking to WinHelp. It allows you to reuse topic identifiers in your
instrument. If several questions use the same help text, you can specify the same
topic identifier for all fields that will use that help text. This cannot be done if you
use the field name, because field names must be unique. If the user selects help
for a field that has no topic identifier, nothing happens.

Using Blaise tags as topic IDs also allows reusing topic identifiers in your
instrument and the same help text. If you do not use tags for anything else in your
instrument, you can specify tags for only those fields for which you want to

Chapter 5: Special Topics

256 Blaise 4.5

display help text. If the user selects help for a field that has no topic identifier,
nothing happens. However, if you want to use tags to jump to questions in your
instrument, you must make each tag unique. In this case, you cannot reuse help
topic identifiers.

With Blaise field names as topic identifiers, and you do not have to create new
items (tags or Blaise language) to use as topic identifiers. Also, if you add or
change your help text, you do not have to change the data model in any way. One
disadvantage of using the field name is that, if you do not include help text for a
question and a user selects help for that field, a cryptic error message appears.
You either have to specify a help topic for every field, or reuse help topics by
using the Alias feature of the Help Workshop compiler. Another disadvantage is it
is not easy to reuse the same help topic for different questions. Because each field
name must be unique, you cannot reuse it as a topic identifier. You can solve this
by using the Alias feature of Help Workshop as mentioned above.

To set topic identifiers, open the Mode Library Editor (from the Control Centre,
select Tools Modelib Editor), select the Toggles settings, choose a behaviour
mode, and select the Standard tab. The Help settings are on the bottom half of the
tabsheet.

Figure 5-7: Help settings in the Mode Library Editor

 Chapter 5: Special Topics

Developer's Guide 257

• If your topic ID is Help language, specify the number of the help language in
the Help language box.

• Select the Use Windows help box.

• Select a topic identifier in the Topic ID box: Help language, tag, or field
name.

If the topic identifier is Help language, make sure that you have defined a help
language in your data model and that the Help language box is set to the correct
value. In the following example, the help language in the data model is HLP, and
the value in the Help language box of the Mode Library Editor would be 2:

DATAMODEL Age

LANGUAGES = ENG "Plain English",
 HLP "Help topic identifier"

FIELDS
 AgeResp (q1) "How old is the respondent" "Age" : 0..99
 AgeMother (q2) "How old was the mother when the
 respondent was born" "Age": 12..50
END

In this example, both questions have the same topic identifier in the help
language: Age. The WinHelp file contains a topic with identifier Age. You can
leave the help language empty for a field; if you do, nothing will happen when
you select question help in the DEP.

If you choose the Tag for the topic identifier, the contents of the tag will be used.
In this example, each field has a different tag (q1 and q2), so the help file contains
a topic with identifier q1 and a topic with identifier q2. You can leave the tag
empty for a field; if you do, selecting question help in the DEP does not do
anything.

If you choose Field name for the topic identifier, the name of the field without the
block path will be used as the help topic identifier. Because a field always has a
name, you have to define a topic in the help file for each field. In this example:
AgeResp and AgeMother.

Chapter 5: Special Topics

258 Blaise 4.5

! Note that when you set toggles in the Mode Library Editor, you can set
toggles separately for Interviewing, Data editing (dynamic checking), and
Data editing (static checking). These three sections correspond to different
data entry modes in the DEP. Therefore, you can have different help settings
for each of the DEP modes.

5.8.2 Create a WinHelp file
You will need a program to create WinHelp files. Help files are normally created
from an RTF file. An example of such a file, howold.rtf, is supplied with the
Blaise system in the \Doc\Chapter5\Help folder.

In our example for the data model age.bla, the default name of the help file is
age.hlp. The system determines the name of the help file by using the name of
the .bmi file. If you want to give the help file a different name, indicate the help
file name in the Style–Options settings of the Mode Library Editor. The help file
needs to be located in the same directory as the .bmi file.

5.8.3 Blaise help language
You can use the language capability of Blaise to write help text. In this method,
you declare a help language in the data model, specify the number of the help
language in the DEP configuration file, and provide a shortcut or function key in
the DEP to invoke the help text. When the help is accessed in the DEP, a window
appears that carries the Q-by-Q text. The following age.bla data model
demonstrates how the help text is specified.

DATAMODEL Age

LANGUAGES = ENG "Plain English",
 HLP "Help text"

FIELDS
 AgeResp (q1) "How old is the respondent"
 "Determine the age of the respondent on
 January 1st." : 0..99

 AgeMother (q2) "How old was the mother when the respondent was born"
 "Determine the age on January 1st
 of the mother of the respondent.": 12..50

END

 Chapter 5: Special Topics

Developer's Guide 259

When you use the Blaise help language facility directly, you can specify a
different help language for each DEP behaviour mode. However, the Blaise help
language is probably easier to set up for smaller instruments.

5.9 LAYOUT Section

The default Blaise user interface features a page-based presentation. This means
that the question text is displayed in the upper part of the screen (in Blaise, this is
the InfoPane) and a page containing several data entry cells is displayed on the
bottom part of the screen (this is the FormPane). The default presentation for data
editors does not have an InfoPane and uses the whole screen for the FormPane.
Full explanations and examples of the FormPane, InfoPane, and all DEP window
components are in Chapter 6.

For many situations the default presentation is fully satisfactory and elegant.
Interviewers have found this presentation to be very easy to use because it
facilitates navigation and helps increase their understanding of the flow of the
instrument.

The Blaise system provides a way to introduce alternative screen presentations.
The following samples show different screen presentations that have been used in
one instrument. These are from the instrument layout.bla found in the
\Doc\Chapter6\Layout folder of the distribution.

Chapter 5: Special Topics

260 Blaise 4.5

Figure 5-8: Screen layout sample one

Figure 5-9: Screen layout sample two

 Chapter 5: Special Topics

Developer's Guide 261

Figure 5-10: Screen layout sample three

Figure 5-11: Screen layout sample four

Chapter 5: Special Topics

262 Blaise 4.5

Figure 5-12: Screen layout sample five

Providing alternative screen presentations is a two-step process. The first step is
to define a library of possible screen presentations in a mode library file. Creating
and maintaining the mode library file is discussed in Chapter 6. Normally an
organisation would have one or two individuals develop a mode library file for all
the Blaise developers to use.

The second step is to introduce a LAYOUT section in the instrument that the Blaise
developers can use to incorporate different screen presentations.

The sample screens shown above came from an instrument called layout.bla
found in the \Doc\Chapter6\Layout folder. The instrument was prepared with
the mode library file modelib.bml that is also in the \Doc\Chapter6\Layout
folder. In this mode library file, there are style names for the Grid, the InfoPane,
and the FieldPane. A particular screen presentation is achieved by combining the
three kinds of specifications. The following table summarises the types of screens
and the combination of styles for Grid, InfoPane, and FieldPane that were used.

 Chapter 5: Special Topics

Developer's Guide 263

Figure 5-13: Layout style names for example screens
Type of Screen Grid InfoPane FieldPane
Figure 5-8: Horizontal split screen with
8 rows of fields

Two_x8 For8Rows For39Char

For 80Char

Figure 5-9: Horizontal split screen with
12 rows of fields

_Default
TableLayout

For12Rows _Default
TableLayout

Figure 5-10: One question and one
entry cell on the screen

Two_x8 DeepPane For78Char

Figure 5-11: No InfoPane, question
text in FormPane

Elev_x20 NoPane OneLiner1
OneLiner2
OneLiner3
OneLiner4

Figure 5-12: Horizontal split screen
with three column FormPane

ThreeCol For12Rows For26Char

The style names were chosen to suggest what each style is supposed to do. Style
names for Grid, InfoPane, and FieldPane that are present in the mode library file
can be used in the layout section. For the example layout.bla there are two
layout sections. One is at the data model level. The other is at the block level for
the block BMoney. You can inspect the example file layout.bla for details
about the layout section for the block BMoney. The RULES and LAYOUT sections
at the data model level are:

RULES {datamodel level}
 Person
 IF Person.Job = Yes THEN
 Commute(WholeName, Person.Distance)
 ENDIF
 Money
 Economic

LAYOUT {datamodel level}
 BEFORE Person
 GRID Two_x8
 INFOPANE For8Rows
 FIELDPANE For39Char
 AT Commute
 GRID Two_x12
 INFOPANE For12Rows
 BEFORE Economic
 NEWPAGE

5.9.1 Implementing LAYOUT sections
The LAYOUT section follows the RULES section and is optional. If there is no
LAYOUT section, the default styles from the mode library file are used. The

Chapter 5: Special Topics

264 Blaise 4.5

default styles are the first listed styles in the mode library file for Grid, InfoPane,
and FieldPane.

If a LAYOUT section is used, all screen layout instructions are taken from the
LAYOUT section. Layout elements that are allowed for the RULES section, such as
NEWPAGE, NEWLINE, DUMMY, and NEWCOLUMN, are ignored if they are present in
the RULES section and a LAYOUT section is also present. A LAYOUT section uses
three kinds of key words; location key words, layout style key words, and layout
element key words (these are covered in this section).

5.9.2 Location key words
Location key words specify where styles are to take effect. Location key words
are summarised below. In the following paragraphs, a field name can be an
elementary field name or a block field name:

• AT: The layout instruction applies only to the field. Note that, in addition to
field names, the AT instruction can be applied to the key words BLOCKSTART
and BLOCKEND.

• BEFORE: The layout instruction applies to any following fields.

• FROM TO: The layout instruction applies from one named field to another
named field.

• AFTER: The layout instruction applies after the named field.

Location key words must be followed by layout element key words or layout style
key words.

5.9.3 Layout style key words
There are three layout style key words:

• GRID: Applies a Grid style name from the mode library file.

• FIELDPANE: Applies a FieldPane style name from the mode library file.

• INFOPANE: Applies an InfoPane style name from the model library file.

Layout style key words must follow a location key word.

 Chapter 5: Special Topics

Developer's Guide 265

5.9.4 Location and layout key words used together
The following example demonstrates the location and layout style key words
working together:

BEFORE Person {block}
 GRID Two_x8
 INFOPANE For8Rows
 FIELDPANE For39Char

The field Person is a block field name. Its layout instructions apply to all
elementary fields in the block. Since the location key word BEFORE is used, all
following blocks and fields will have the same styles unless other styles are
introduced later.

Before the block Person, the Grid Two_x8 is applied. This Grid applies a page
with two columns by eight rows. This allows up to 16 fields on one page for the
interviewer or the data editor. Technically speaking, there are 16 FieldPanes in
the FormPane. A width of 78 characters for the FormPane is assumed with this
Grid definition.

The InfoPane For8Rows is designed to go with the Grid Two_x8. In other words
these Grid and InfoPane style names complement each other. The number of lines
allowed for question text in the InfoPane complements the number or rows
allowed in the FormPane (page).

There are two columns in this FormPane of 78 characters. We would like each
column to hold one FieldPane of 39 characters. A FieldPane definition
For39Char is defined to place several items in this FieldPane, such as field name,
answer cell area, remark indicator location, and response label.

5.10 Example Data Models

The following is a list of example data models and other files found in
\Doc\Chapter5 under the Blaise system folder. These files illustrate the points
made in this chapter. You can easily prepare and view them:

Chapter 5: Special Topics

266 Blaise 4.5

Figure 5-14: Example files for Chapter 5
File Name Description
Audit\AuditKey.zip Contains an audit trail DLL (auditkey.dll) and its source code

(auditkey.dpr) that stores each form's audit trail information in a
separate file. Also includes a readme.txt file that contains
instructions.

Audit\AtLeave.man Manipula set-up that condenses the audit trail to only those lines
where the DEP is leaving a field. This reduces the amount of
redundant text, and prepares the file summary.txt for further
processing with Repopulate.man and AuditSummary.man.

Audit\AuditSummary.man Provides a summary of the contents of the entered data. It keeps
only the last value of any field and deletes all other lines.

Audit\Repopulate.man Creates a form-specific Manipula file named Repop.man. It can
be used to repopulate a database from an audit trail.

Classify folder The files in the Classify folder can be used to produce a
classification type from a flat source code file. See the Read.me
text file for instructions on preparing and viewing these files.

External\Commut17.bla Main data model for the external files example.

External\Modelist.bla External data model to state specifications for the external files
example.

External\Modelist.asc ASCII file of external information for external files example.

External\Modelist.man Manipula program to convert an ASCII file to a Blaise data file for
the external files example.

Help\Age.bla A small Blaise data model from which you can invoke WinHelp
help screens.

Help\HowOld.rtf Source text file for the WinHelp file.

Help\Age.hlp Resulting WinHelp file created from the HowOld.rtf file.

Lookup folder The files in the Lookup folder illustrate a few ways to create
lookup files. See the read.me file in the folder for instructions.

MultiMedia\Alcohol.bla Example of multimedia language.

MultiMedia\Party.wmf,
frstdrnk.wav

Image and sound files referenced in the alcohol.bla data model.

Procedure\M_of_20.bla A data model that demonstrates a procedure which selects m
distinct digits out of n <= 20.

Procedure\M_of_20.prc A Blaise procedure which selects m distinct integers out of n
where n <= 20. This can be easily extended to a higher number.

Developer's Guide 267

6 Data Entry Program

The Blaise® Data Entry Program (DEP) is a multimode user interface that can be
used for Computer Assisted Telephone Interviewing (CATI), Computer Assisted
Personal Interviewing (CAPI), and Computer Assisted Self-administered
Interviewing (CASI), interactive editing, and data entry from paper forms. The
program gives you a tremendous amount of flexibility to change the window
layout, menu options, Speedbar, function key assignments, fonts, and colours.
This chapter covers how to use the wealth of flexibility available in the DEP and
how to adapt it to your needs.

6.1 Overview of Screen Design in Blaise®

To configure the DEP correctly, there are a few points to be made about Blaise’s
approach to screen design.

Split screen for interviewing
Blaise’s default interviewing mode is a splitscreen, page-based presentation with
question text on the top part of the screen, and fields and answer information on
the bottom part of the screen. Typically, there are several fields displayed at a
time. This is in contrast to a question-based presentation, which displays one
question at a time to the interviewer.

A typical split screen in a Blaise instrument can display from 10 to 20 questions
on one page. This means that all of the responses for an interview, even for a long
interview, can be displayed in a manageable number of pages.

This approach is very popular with interviewers. They can see the answers to
several previous questions and can verify that data have been entered correctly.
They can also use keystrokes to page up and down through the instrument; much
in the same way that pages can be turned in a paper questionnaire.

Generated screens
Screens in Blaise are not drawn by programmers, they are generated. Generated
screens mean that development is less expensive, maintenance is easier, and it is
easier to promote organisational standards. It also allows you to switch modes of
operation, including styles of screen display, while running an instrument.

Chapter 6: Data Entry Program

268 Blaise 4.5

This method is also very robust to changes in your instrument. If questions are
added or deleted, you just re-prepare the instrument and the system regenerates
the screens. If the screens were drawn by hand, then changes in the design of the
instrument could be agonising to implement.

Customise the DEP using external configuration files
Even though screens are generated, Blaise gives you a great deal of power to
influence screen display and behaviour. You can customise the DEP using
external files. One advantage of specifying behaviour and layout in separate files
is that you can change the behaviour and appearance of the DEP without affecting
the source code of the data model. Thus you can change the DEP interface for the
same data model for different user groups.

Controlling screen layout and behaviour in this way also provides tremendous
flexibility, since you can adapt your instrument by changing just a few settings.
This frees up the developer’s time and standardises the interface for your users.

6.2 DEP Window Components

The DEP window is made up of several components:

• the FormPane (or the page)

• the FieldPane

• the InfoPane

• the Menu bar

• the Speedbar

• the Status bar

These components are illustrated in the following sections.

There is also an underlying Grid that is used for spacing control for the FormPane
and FieldPane. Blaise provides default settings for all of these, but they can be
modified by editing a special customisation file called the mode library file (This
file is discussed in detail later in this chapter).

 Chapter 6: Data Entry Program

Developer's Guide 269

6.2.1 FormPane
The FormPane, also called the page, is the area of the DEP window that displays
the fields specified in your data model. This display includes the field names and
the spaces provided to enter responses.

Figure 6-1: FormPane

FormPane

When using interviewing mode, the FormPane will usually occupy the bottom
part of the DEP window, though this can be changed. The InfoPane will usually
occupy the top part; this is discussed later in this section. For data editing mode,
the FormPane usually occupies the entire DEP window, as shown in Figure 6-2.

Chapter 6: Data Entry Program

270 Blaise 4.5

Figure 6-2: FormPane that occupies the entire DEP window

FormPane

Using the Mode Library Editor, you can adjust the size and layout of the
FormPane by adjusting settings for the Grid and the FieldPane. These are
described in section 6.5 Mode Library File.

6.2.2 Grid
The DEP screen is divided by an invisible Grid. The Grid contains cells and the
cell size is the base measurement upon which screen elements will be placed on
the FormPane.

 Chapter 6: Data Entry Program

Developer's Guide 271

Figure 6-3: Default Grid for interviewing mode

Grid

The Grid size is based on pixels. A scaling factor is calculated based on the
FormPane font size you use, which you set in the mode library file. The Grid size
can extend beyond the size of the DEP window. In that case, the DEP window
scrolls when information is entered.

Using the Mode Library Editor, you can adjust the height, width, number of
columns, and colour of a Grid. For Grids used for tables, you can also set options
for the column and row headings. See section 6.5 Mode Library File for details.

6.2.3 FieldPane
The FieldPane is an individual unit of the FormPane that contains an individual
field. FieldPanes sit in the FormPane area of the window.

Chapter 6: Data Entry Program

272 Blaise 4.5

Figure 6-4: FieldPane

FieldPane

In most cases, each FieldPane will occupy one cell in the Grid, but one FieldPane
can occupy two or more cells in the Grid. The FormPane can contain many
FieldPanes or just one, depending on your settings.

Using the Mode Library Editor, you can adjust the height and width of the
FieldPane. You can also decide which information components appear on the
FieldPane, and you can set the position, height, width, and colour of each
component. See section 6.5 Mode Library File for details.

6.2.4 InfoPane
The InfoPane holds the question text and possible answers.

 Chapter 6: Data Entry Program

Developer's Guide 273

Figure 6-5: InfoPane

InfoPane

In the default layout, the InfoPane is the top part of the window. You do not have
to have an InfoPane in your instrument. Generally, you will not have an InfoPane
during data editing mode (as shown in Figure 6-5). The size of the InfoPane is
calculated as the FormPane font size multiplied by the InfoPane height.

Using the Mode Library Editor, you can adjust the position and size of the
InfoPane, or decide not to display it at all. You can also decide which information
components appear on the InfoPane, and you can adjust the position, height, and
colour of each component. See section 6.5 Mode Library File for details.

6.2.5 Menu, Speedbar, and Status bar
The other components of the default DEP window are the Menu bar, the
Speedbar, and the Status bar. These items provide options and information for the
user when the DEP is running. You can customise the menu and Speedbar
choices by editing the DEP menu file, which is described later in this chapter.

Chapter 6: Data Entry Program

274 Blaise 4.5

Figure 6-6: DEP Menu, Speedbar, and Status bar

Menu

Speedbar

Status bar

Using the Mode Library Editor, you can choose to show or hide the Speedbar and
status bar.

6.3 Modes of Behaviour

One of the distinguishing features of Blaise is that an instrument can be run in one
of four different modes of behaviour. Because different users have different needs
when using the DEP, Blaise allows you to decide and choose the modes of
behaviour for each group of users.

You can set behaviours for routing, checking, and error reporting, and you can
set behaviour to dynamic or static. This section describes each of the modes of
behaviour.

6.3.1 Routing
Routing determines how the user is led through the instrument. The type of
routing determines whether the user is led through the instrument dynamically or
has freedom of movement. You can set the DEP to follow either dynamic or static
routing.

Dynamic routing means that the user is led through the instrument by the rules of
the application. As answers are recorded, branching and skipping are

 Chapter 6: Data Entry Program

Developer's Guide 275

automatically executed. This way the user is always on the route as it was
programmed by the developer and is not able to go to fields that are off the route.
Interviewing almost always uses dynamic routing.

Static routing means that the user has complete freedom to move to any field,
whether it is on or off the route. Thus it is inappropriate for interviewers but
appropriate for data editors. This might also be useful when entering or editing
data that was collected on paper forms, as you might want to go to fields currently
off the route.

6.3.2 Checking
Checking determines how rules are checked. Dynamic checking means that rules
are always checked as data are entered. Static checking means that the user
decides when to invoke the rules by pressing a function key. Static checking may
be useful when editing a very large data model, or when changes are made to an
existing form's data.

You have a choice of checking behaviour only if you use static routing. Dynamic
routing always enforces dynamic checking.

6.3.3 Error reporting
Error reporting determines if and how errors are displayed to the user.

Dynamic error reporting means that a message is displayed in an error box when
an error is encountered. The user must do something immediately to correct or
suppress the error.

Static error reporting means that the user does not have to correct errors as they
occur. When an error is encountered, an error symbol appears next to the answer
cell and an error counter is incremented. The user can then view errors at any
time by selecting a menu option or by double-clicking one of the error symbols.

6.3.4 Combining the behaviour modes
The following table summarises the combinations of the behaviour modes. The
term CADI means Interactive Editing and the term CAI means Computer Assisted
Interviewing.

Chapter 6: Data Entry Program

276 Blaise 4.5

Figure 6-7: DEP behaviour combinations
Routing Checking Error Reporting Remarks

Static Static Static Old CADI—Suggest for very
large forms.

Static Static Dynamic Impossible.

Static Dynamic Static New CADI—Suggest for most
applications.

Static Dynamic Dynamic Impossible.

Dynamic Static Static Impossible.

Dynamic Static Dynamic Impossible.

Dynamic Dynamic Static New CAI—Suggest for training
new interviewers or data entry
from paper forms.

Dynamic Dynamic Dynamic Old CAI—Suggest for
experienced interviewers.

As you can see, there are four possible combinations and four impossible
combinations.

The New CAI mode, with dynamic routing, dynamic checking, and static error
reporting, might be useful for new interviewers who are just learning to use
electronic interviewing. You might want them to just learn the survey at first and
stay on the route. High-speed data entry might also benefit from this mode. You
can enter data following the rules, but concentrate on the errors afterwards.

For almost all interviewers, you would use the Old CAI mode with dynamic error
reporting turned on. You can then clear up problems when they are encountered.

You define these behaviours in the mode library file, which is discussed in the
following section. An example data model that demonstrates the four modes of
behaviour is behaviour.bla, found in the \Doc\Chapter6\Behaviour
folder.

 Chapter 6: Data Entry Program

Developer's Guide 277

! It is possible to mix and match screen styles with modes of behaviour. For
example, while data editing mode usually does not use the InfoPane, it is
possible to have data editing behaviour with a traditional interviewing
screen style.

6.4 DEP Customisation Files

There are three Blaise files that you can customise to control the behaviour and
appearance of the DEP: a mode library file, a DEP configuration file, and a menu
file. The following table summarises the files and what they do:

Figure 6-8: DEP customisation files

Mode Library
File

Configuration
File Menu File

System default
file name

Modelib.bbml No default file
provided

Depmenu.bwm

Catimenu.bwm (for CATI
instruments)

Purpose Controls:

-Screen layout

-Text and colour
enhancements

-Behaviour
settings

Overrides the
following settings
of the modelib file:

-Text and colour
enhancements

-Behaviour
settings

Controls

-Available menu choices

-Key assignments of
menu choices.

Allows user-defined
menu entries.

How to edit

Edit in Mode
Library Editor

Edit in DEP
Configuration
Program

Edit in Menu Manager

When it must be
in place

Before the data
model is
prepared

Before the data
model is run

Before the data model is
run

You have a few options for using these files.

• Use the system default file for all your data models.

• Edit and create a new file and use it for all data models.

• Edit and create several different files, and apply different files to different
data models.

Chapter 6: Data Entry Program

278 Blaise 4.5

The settings in these files work in an integrated way. For example, screen layout
and font sizes must work together. If you specify a font size that is too large for
the screen size, the result could be a DEP window display that is less than
optimal. Also, settings in the DEP configuration file override certain settings in
the mode library file. The settings must be compatible and the files must be
applied correctly to the data model. It is important to understand the relationships
between the settings and the files as you customise the DEP window.

6.5 Mode Library File

The mode library file, referred to as modelib, is a customisation file that holds
settings for:

• Fonts and colours for the DEP

• DEP behaviour options, including multimedia

• Layout of the InfoPane, FormPane, FieldPane, and Grid for the DEP window

Using the settings in the mode library file, you can customise the DEP in many
ways. Some examples include:

• Changing and adjusting DEP window colours, either globally for the entire
DEP window or for individual parts of the window

• Moving or hiding the InfoPane, even for interviewing mode

• Using descriptive text for table column headings, field names, and other
displays

• Adjusting DEP behaviours for interviewing or editing modes

• Creating your own sets of behaviours and layouts

The default mode library file provided with Blaise is modelib.bml and can be
found in the Blaise system folder.

You can choose either to use the default modelib file settings for layout and
behaviour, or you can customise the modelib file to meet your specific
requirements. If you use the default modelib file, you need only create, prepare,
and run your data model as usual.

 Chapter 6: Data Entry Program

Developer's Guide 279

If you choose to edit the modelib file, you can define and edit the default settings
and apply the defaults to the entire data model, or you can define new layout
styles and behaviours, and use those for your data model. You can even define
and use different layout styles for different fields of the same data model, all
using one modelib file.

Mode Library Editor
The Mode Library Editor is a Blaise program that you use to edit all aspects of
the mode library file, including layout and behaviour. To run the Mode Library
Editor, select Tools Modelib Editor from the Control Centre menu. It can also
be run as a separate program by invoking Emily.exe. Details on using the Mode
Library Editor are described in the following sections in this chapter.

Modelib file and the .bdm file
Modelib file settings are incorporated in the data model's .bdm file. The .bdm file
is one of two prepared instrument files and is created when the data model is
prepared in the Control Centre. The process by which the information from the
modelib file gets applied to the data model is as follows:

• Layout and behaviour settings are set and saved to the modelib file, which has
a .bml extension. This is done in the Mode Library Editor.

• The settings from the modelib file are incorporated in the data model's .bdm
file. Modelib settings can be incorporated either during the prepare process in
the Control Centre, or using the Mode Library Editor.

• When the data model is run by the DEP, the DEP reads the .bdm file, and the
modelib layout and behaviour settings take effect.

• To use the prepare process in the Control Centre to save the modelib settings
to the .bdm file, apply the modelib following the criteria outlined in section
6.5.7 Applying a mode library file.

Chapter 6: Data Entry Program

280 Blaise 4.5

The following diagram illustrates the modelib process.

Figure 6-9: Modelib process

Control Centre
Project Options, Store
layout:
- LAYOUT instructions stored
in ~mi file

→
LAYOUT
 AT FieldName
 INFOPANE
NewPane

Prepare creates: → bmi file

- Modelib settings saved to
.dm file → bdm file

Mode Library Editor
Open modelib file
library: → bml file

Open data model:
- Reads LAYOUT from ~mi file → bmi file

View pages → bdm file
Save data model
-Modelib settings saved to
~dm file → bdm file

Data Entry Program

View: → bdm
file →

Relationship between the modelib and DEP configuration files
You can set layout and behaviour properties in the modelib file. You can,
however, use a DEP configuration file to override the modelib behaviour settings.
For example, you might want to use one set of behaviours for interviewers, and
another set of behaviours for data editors. This makes it very easy to
accommodate different users with one prepared instrument.

If you choose to use a DEP configuration file, the settings from the DEP
configuration file will override the settings of the modelib file.

 Chapter 6: Data Entry Program

Developer's Guide 281

You cannot, however, set layout information in the DEP configuration file--all
layout information must be set in the modelib file. For more details on the DEP
configuration file, see section 6.6 Data model properties.

6.5.1 Using the Mode Library Editor
This section describes how to open, save, print, and convert modelib files, and
how to open and save data models in the Mode Library Editor.

Open the Mode Library Editor
To open the Mode Library Editor, from the Control Centre select Tools
Modelib Editor. The Modelib Editor window opens. If a mode library is identified
under Project Options, then the Mode Library Editor will open with this mode
library file.

Figure 6-10: Mode Library Editor

You can use the menus or the speed buttons to access options.

Open a modelib file
To open an existing modelib file, from the menu select File Open. Select a
modelib file with a .bml extension. To create a new modelib file, select File
New.

Chapter 6: Data Entry Program

282 Blaise 4.5

The branches Style, Toggles, and Layout appear in the tree view on the left. The
item, name, version, and modification status of the file appears to the right.
Expand the tree view branches by clicking the plus sign next to each one. The
following sample shows the window for a new modelib file, with all tree branches
expanded:

Figure 6-11: Modelib Editor window for a new modelib file

• The Style branch defines fonts, colour schemes, and other DEP options.

• The Toggles branch defines behaviours.

• The Layout branch defines the size and appearance of Grids, FieldPanes, and
InfoPanes.

Settings for each of these branches are described in detail in the following
sections of this chapter.

Open a data model in the Modelib Editor
There are two reasons to open a data model in the Modelib Editor. First, you can
preview how the layout settings will appear on your instrument's pages. This
preview allows you to see how the modelib setttings will look without having to
run the DEP.

 Chapter 6: Data Entry Program

Developer's Guide 283

Second, the modelib settings are saved automatically by the Modelib Editor to
guarantee that the Modelib Editor is able to reproduce the DEP pages that
conform to the specified layout section in your data model to (the data model's
.bdm file). You then do not have to re-prepare the data model in the Control
Centre to apply the modelib settings—the Modelib Editor will save the modelib
information to the .bdm file.

To open a data model, select File Open Data Model. Select a data model's
prepared .bmi file and the name of the data model appears on the right.

Figure 6-12: Data model opened in Mode Library Editor

A new branch called Pages appears in the tree view. Use the Pages branch to
view the pages of your instrument. This is described in detail in section 6.5.5
Viewing pages in the Mode Library Editor.

The Mode Library Editor prepares the contents of the pages after loading the data
model. Note that the mode library file with which you originally prepared your
data model is not used. Instead, the currently active mode library file is used. (If
you open a data model without opening a modelib file first, the modelib file that
the data model was prepared under opens as a new mode library file.)

Save a data model in the Mode Library Editor
To save the modelib information to the .bdm file, select File Save data model.
If you do not do this, the modelib settings will not be applied to the .bdm file, and
you will have to re-prepare the data model under the modelib in the Control
Centre.

Chapter 6: Data Entry Program

284 Blaise 4.5

Print modelib settings
You can print your modelib settings by selecting File Print from the menu.
This prints a text file that lists all the settings.

Save the modelib file
Once all changes have been made to the modelib file, save it by selecting File
Save

! Consider saving the modelib file under a new name so that you can always
revert to and use the default when necessary. If you rename the modelib
file, you must specify to use that modelib according to the criteria listed in
section 6.5.7 Applying a mode library file.

Meta search path option
If you open a data model that uses other data models, you can set an option to
have the program search for the meta files of the other data models. Select Tools

 Environment Options, and enter a search path.

Preview in a separate window option
When checked, the data entry pages will be displayed in a separate window. This
can be handy if you want immediate feedback from a change made to one of the
options of the mode library. Select Tools Environment Options, and select
Preview in a separate window check box.

6.5.2 Mode library file: Style settings
The Style branch of the tree view expands to Fonts, Options, and Colour schemes.

• Fonts affect how the text appears in the InfoPane and FormPane. You can
change the default fonts and create your own font styles.

• Options allows you to set various global options for the DEP.

• Colour schemes allows you to select and edit global colour schemes for the
DEP.

Style–Fonts–Default fonts
To change the default fonts used in the DEP window, expand the Fonts branch
and select the Default branch, as shown in Figure 6-13.

 Chapter 6: Data Entry Program

Developer's Guide 285

Figure 6-13: Default font settings

You can adjust the FormPane font and the Rich text font.

• FormPane font. Set the font for the FormPane (the lower part of the DEP
window). Select a font name and size. A preview of the settings appears on
the right.

• Rich text font. Set the font that is used in the InfoPane, and in some elements
of the FieldPane. Select a font name and size; select a colour; and turn bold,
italics, and underline attributes on or off. In the Tab stops box, specify tab
stops in pixel increments and separate tab stops with a space. For example, to
set tab stops at 25, 75, and 100 pixels, you would type 25 75 100. The default
tab stops are 50 pixels apart. Apply tab stops to your question text by
inserting @| in the text. A preview of the settings appears on the right of the
screen.

! Be careful with the FormPane font size, because it influences the height
of the DEP window. The height of the DEP window is the maximum
number of lines on the screen (usually 25) times the height of the
FormPane font. Increasing the FormPane font size will also increase
the size of the InfoPane. If the height of the DEP window is bigger than
the computer's screen, scroll bars will appear in the FormPane, but not
in the InfoPane.

Style–Fonts–User defined
You can apply your own font attributes to selected text in the InfoPane. To set
your own font styles, select the User Defined branch under the Fonts branch. A
list of letters and font attributes appear on the right side of the screen, as shown in
Figure 6-14.

Chapter 6: Data Entry Program

286 Blaise 4.5

Figure 6-14: User defined font settings

Assign attributes to a letter code here, and then enclose data model text within
that letter code. When you apply this modelib file to the data model, any data
model text enclosed by that code will take on the attributes set here. You can set
up to 26 font styles. See Chapter 3 for more information on using the codes in the
data model.

Select settings for font name, font size, colour, bold, italics, underline, and tab
stop attributes. Specify tab stops in pixel increments and separate tab stops with a
space. For example, to set tab stops at 25, 75, and 100 pixels, type 25 75 100. The
default tab stops are 50 pixels apart. Apply tab stops to your question text by
inserting @| in the text. There are eight pre-defined letters with the following
default attributes. You can, of course, change these default attributes.

Figure Table 6-15: Pre-defined letter attributes
Pre-defined letter Attribute

@B Bold

@G Green

@H Large font

@I Italics

@N Dark blue

@R Red

@S Light blue

@U Underline

 Chapter 6: Data Entry Program

Developer's Guide 287

To reset a letter code to its original style on the User defined dialog, set its value
to Current.

! Remember that the different attributes will be superimposed upon each
other. For example, the code "@BThe @Iquick brown @Ufox jumps @Bover @Ithe
@Ulazy dog" translates into The quick brown fox jumps over the lazy dog.

Style–Options
To set various global options for the DEP, select the Options branch of the tree.

Figure 6-16: Options settings

In the Options section:

• Minimise allowed. Select to allow the user to minimise the DEP window.

• Minimise on alien router. Select to minimise the DEP window when an alien
router (a user’s DLL) is used.

• Resize allowed. Select to allow the user to resize or move the DEP window.

• Hide speed bar. Select to hide the Speedbar.

• Forms, Answer. Navigate, Options, or Keypad toolbars. Select to hide or
show the following toolbars in the DEP.

Chapter 6: Data Entry Program

288 Blaise 4.5

• Show parallels on tabsheets. Select to display parallel blocks on a tabsheet in
the DEP window. Otherwise, the user can access parallel blocks only through
the Navigate Subforms menu (or assigned function key) in the DEP. A
sample of parallel blocks on a tabsheet is shown below, with a parallel block
called Business.

Figure 6-17: Parallel blocks on a tabsheet in the DEP

In the Audit trail section (see Chapter 5 for more information on the audit trail):

• Make audit trail. Select to turn on the audit trail.

• Audit DLL. Specify the audit trail DLL name and its path.

In the Help section:

• Help file name: If you are using WinHelp, specify the help file name here. If
a name is not specified, the system will take the name from the .bmi file by
default. The help file needs to be located in the same folder as the .bmi file.

In the Initial state section:

• Select whether you want the DEP window to open normally, minimised, or
maximised. The Normal setting causes the DEP window to open somewhere
between maximised and minimised.

In the Save key section:

• Dialog save key: Select a key that the user can use to close the dialog boxes
for remarks and open questions. This provides an alternative to clicking the
Close or Save buttons, or the <Alt+S> or <Alt+C> to close the dialogs.

 Chapter 6: Data Entry Program

Developer's Guide 289

In the Status bar section:

• Hide status bar: Select to hide the status bar in the DEP window. If the status
bar is not hidden, select the items to appear on the status bar. All available
panels are in the Available panels list. The panels currently selected to appear
are in the Selected panels list. Click the arrows to move the panels between
the lists. The order in which the panels are listed in the Selected panels list is
the order in which they will appear in the status bar. Figure 6-18 includes the
list of available panels.

Chapter 6: Data Entry Program

290 Blaise 4.5

Figure 6-18: List of available panels

Form history When selected the form history is displayed. The form
history is new, old, get or dial.

Page number When selected the number of the current page is displayed
and the total number of pages.

Modified When selected the system displays the modified status of
the current form. This status can be modified, modified by
rules or read-only.

Form status When selected the system displays the form status of the
current form. This status can be clean, suspect or dirty.

Edit mode When selected the system displays the edit mode. The edit
mode can be navigate, insert or overwrite.

Parallel When selected the name of the current parallel is
displayed.

Language When selected the identifier of the current language is
displayed.

Toggle set When selected the description of the currently active toggle
set is displayed.

Layout set When selected the description of the currently active layout
set is displayed.

CATI When CATI is active the text CATI is displayed

Primary key When active the value of the primary key is displayed.

Time When active the current time is displayed. During CATI
interviewing this time is the respondent time (meaning that
is corrected to take a possible time difference because of a
time zone into account). If there is time difference the time
is displayed in a different colour.

Tag When active the tag of the currently focussed question will
be displayed.

User defined 1,..,
User defined 9

When selected you can specify a text (with text fills) that
will appear on the status bar. When a User defined panel is
selected a Status bar tab is displayed under
Project|Datamodel Properties in the Blaise Control Centre.
On this tab you can enter the value for each of the User
defined panels selected.

Field name When active the field name of the currently focussed field
is displayed.

Date When active the current date is displayed.

 Chapter 6: Data Entry Program

Developer's Guide 291

Colour schemes
To select a colour scheme for the DEP window, select the Colour Schemes
branch.

Figure 6-19: Colour scheme settings

A scheme selected here will apply globally to the DEP window. Blaise provides
four default colour schemes.

• Select a colour scheme from the Colour Scheme section. A preview of the
scheme appears in the Preview section.

• To change individual items of the colour scheme, select an item from the
Items list and select a new colour for that item. The Preview will reflect the
change.

• To apply the scheme to your data model, click the Apply button. You must
click the Apply button after you have made your change.

Chapter 6: Data Entry Program

292 Blaise 4.5

! You can also specify colours for specific components of the DEP window
by changing the Grid, FieldPane, and InfoPane colours. Colours selected
for individual components will override the colour scheme items selected
here. When a colour change has been made to an individual item and the
Apply button is selected, the changes are not made to the colour scheme in
the Colour Scheme list box. If you change or just select a colour scheme,
any individual item colour changes will be lost. You will need to close the
mode library without saving and then reopen the library to bring back
your colours.

6.5.3 Mode library file: Toggles
Toggles specify behaviours for the DEP. A Toggle Set is a group of behaviour
settings named with a behaviour identifier. The behaviour identifiers listed in the
modelib file are the ones that appear when selecting self-defined data entry modes
in the Data Entry Program (from the DEP menu, Options Data Entry Mode
Self -defined).

The default behaviour identifiers are Interviewing, EditCheck (dynamic
checking), and EditNoCheck (static checking), as shown in the following figure:

Figure 6-20: Toggles: default behaviour identifiers

These different kinds of behaviour are used by different kinds of users. For
example, Interviewing would most often be used by interviewers, and EditCheck
would most often be used by data editors. It is also common to match different
layouts with different behaviour sets.

You can edit the settings for the default behaviour identifiers, add new behaviour
identifiers, copy and past new behaviour identifiers, rename, or delete behaviour
identifiers.

 Chapter 6: Data Entry Program

Developer's Guide 293

To copy a behaviour definition, select the definition you want from the tree view.
With the menu command Edit Copy you make the copy. Now select the
Toggles node. Use the menu command Edit Past to insert the copy in the tree
view. The new behaviour name will have a (2) added to the end of the name. You
can change the name by using the Edit Rename command.

There are three tabsheets that contain settings: Standard, Advanced, and
Multimedia. Complete the settings as described in the next section.

Toggles–Standard settings
To set the basic behaviour elements for a toggle set, use the Standard tabsheet.

Figure 6-21: Standard tabsheet for Toggles

In the Data Input section:

• Auto create file. Select to automatically create a Blaise data file, if one does
not already exist, when the data model is run.

• Auto save when finished. Select to automatically save a form when the end of
the form has been reached.

• Allow no save. Select to allow the DEP user to exit a form without finishing
or saving the form. Be careful with using this option for interviewing.

Chapter 6: Data Entry Program

294 Blaise 4.5

• Save clean forms only. Select to allow only clean forms to be saved. This
option can be dangerous if your data model is written in such a way that a
clean form can never be produced. Test your data model thoroughly before
using this option.

• Store ditto. Select to enable the Ditto function, allowing the use of both the
Ditto commands of the DEP menu and Ditto assignments in the RULES
section. Ditto allows you to copy the values of fields from the previous form
to the current one. It is often used for data entry. This option consumes extra
memory because the data of the previous forms have to be kept in memory. If
this option is not selected, Ditto assignments in the RULES will make the
destination fields empty instead of loading the value of the field in the
previous form, and Ditto commands will not be available in the DEP menu.
This option has no effect and claims no internal memory if you start the DEP
with the /X command line parameter (/X causes the DEP to exit automatically
after handling one form).

• Ask save on changed by rules. Select to enable the save behaviour of the
DEP. In this case a form will be saved (or you will be prompted to save it
depending on the prompt save when finished toggle) if the contents have been
changed by the rules only, for instance because of an imputation.

• Auto save interval. To minimise data loss during an interview in case of
power failure or other such failure, enter in the Auto save interval box, the
number of minutes between autosaves. Valid numbers are 0 (disabled) to 255.

• Prompt save when finished. Select to have the DEP prompt the user to save
when a form is finished. Otherwise, the form is automatically saved on exit.

• Auto enter. Select to move the cursor automatically to the next field when the
current field has been filled to its maximum width. This is usually used for
data entry from paper forms, not interviewing.

• Use normal asker. Select to have special routers (CLASSIFY, LOOKUP, and
user-defined alien routers) perform only through a short cut or menu
command, instead of automatically. These are usually set to perform
automatically.

• Auto select input line. Select to have the entire contents of the input line
selected when the cursor arrives at a field. By default, Windows® selects the
contents of the input line as soon as the cursor arrives at the field. If you start
typing when the text is selected, the selected text will be overwritten. If you
do not want this to occur, uncheck this option.

• Position cursor at end of input line. Select this option to position the cursor at
the end of the input line when the cursor is on a field. This allows you to
easily add text to the end of an answer in the input line.

 Chapter 6: Data Entry Program

Developer's Guide 295

• Disable parallel quit button. Select to remove the quit button from the
parallel blocks dialog.

• Ignore hard spaces: Select to disable the hard-spaces translation in texts.

In the Help section (see Chapter 5 for more information on Help):

• Help language. If you have defined a help language within Blaise, or if you
are using WinHelp and your topic ID is Help language, specify the number of
the language used for Help as defined in the data model. (This displays when
the DEP menu option Show Question Text is selected.) A value of 1 means
the first defined language is the help language, 2 the second help language,
and so on. A 0 (zero) means no help text and the current language will be
displayed in the window.

• Use Windows® help. Select to use Windows® Help instead of defining a help
language within Blaise.

• Topic ID. Select a topic identifier, which tells WinHelp which topic to display
for the help. You can choose Help language, Tag, or Field name. The
question help option, <Ctrl-F1>, is only enabled when the Use Windows help
setting has been enabled and when a Topic ID can be determined.

Chapter 6: Data Entry Program

296 Blaise 4.5

Toggles–Advanced settings
Use the Advanced tabsheet to set advanced behaviour elements for a toggle set.

Figure 6-22: Advanced tabsheet for Toggles

In the Check Behaviour section:

• Dynamic routing. Select to enable dynamic routing.

• Dynamic error reporting. Select to enable dynamic error reporting.

• Dynamic checking. Select to enable dynamic checking.

• Hide off route fields. Select to hide fields that are not on the route.

• Check before dial. Select to enable the CATI Call Management System to
check the form read from the daybatch before the dial screen appears. This
toggle will have no effect if CATI Call Management is not active.

• Clear form before get. Select to recheck the data model after the user enters a
complete key to get a form. This prevents unwanted results caused by checks
performed while the key is still incomplete.

• Interpret @ as data in fills. Select this option if you expect the character @ to
be part of the data in a fill, such as e-mail addresses. Don’t select this option
if you want to use colour codes (@A - @Z) in the fills of your data model,
because that would change the way fills are presented on the screen.

 Chapter 6: Data Entry Program

Developer's Guide 297

• Copy remarks. Select this option if you want the data entry program to copy
the remarks of a field or block during field and block assignments.

In the Browser section:

• Keep browse mode. Select to switch the DEP back to browse mode after
closing a form that was selected using the Database Browser.

• Display keys in drop down list. Select to have key fields appear in a drop
down list instead of the default radio buttons, when browsing for forms in the
DEP. This is useful if you have defined a lot of keys. When there is not
enough room to display the keys as radio buttons, the drop down list is used
automatically.

In the Errors section:

• Show field tag. Select to identify fields in error message boxes by their tags.

• Show field name. Select to identify fields in error message boxes by the field
name.

• Show short field name. Select to identify deeply nested field identifications
with a shortened name, using only the first and last block name of the full
path name. Other blocks will be noted by a dot. This option cannot be
selected unless the Show field name option is selected.

• Show field description. Select to identify fields in error message boxes by the
field description. This can make it easier for the user to select the appropriate
field to correct an error. This is also useful for multilingual instruments.

• Use number instead of label. Select to identify the values for enumerated and
set fields by their code numbers and not by their answer text.

• Use small error stack. Select to filter the fields shown in error message
boxes. When selected, the DEP shows all the fields involved in a check since
the latest display instruction (SHOW, ASK, CLASSIFY, LOOKUP, or user-defined
alien router). If this is not selected, error boxes will also involve fields
referred to in all conditions leading to the check.

• Show error counters. Select to display error counters instead of error icons.

• Beep on error. Select to enable the beep feature, which means the computer
will beep when an error occurs with dynamic error mode on.

In the Search Settings section:

• Trigram threshold. Specify the minimum number of trigrams a form or
external record must score on before it will be shown within the trigram

Chapter 6: Data Entry Program

298 Blaise 4.5

lookup dialog. The lookup dialog is used for browsing forms and looking up
external records. A higher number will give faster performance but fewer
records as a result of the trigram search. Valid numbers are 0 to 9.

• Trigram delay time. When performing a trigram search, the DEP lets the user
enter some text before it starts or restarts searching. The trigram search action
is triggered as soon as the user pauses, waits, or hesitates for a certain time
interval. In this field, specify the idle time in tenths of a second. Valid
numbers are 1 to 20.

Toggles–Multimedia settings
To set multimedia behaviours, use the Multimedia tabsheet.

Figure 6-23: Multimedia tabsheet for Toggles

In the Multimedia Settings section (see Chapter 5 for more information on
multimedia):

• Media language. Specify the number of the language used for multimedia as
stated in your data model. For example, if you have three languages listed in
the LANGUAGES section and Multimedia is the third one listed, the media
language would be 3.

• Delay time. This setting is for images only. Specify the number of
milliseconds between the presentation of the images.

• Stop on key. Select to allow the user to stop a sound file from playing by
pressing a keyboard key. If this is not checked, the user can still stop the file
using a menu command.

• Auto play. Select to have the file begin playing automatically when the user
comes to that field.

 Chapter 6: Data Entry Program

Developer's Guide 299

• Stretch. If checked, a picture or video file will take on the values in the
Display height and Display width boxes. If unchecked, the file will display as
its default size, regardless of the values in the height and width boxes.

• Display height and Display width. Specify the height and width, in pixels, of
a picture or video file in the DEP window. This applies only if the Stretch box
is checked.

• Media panel border. Select to display a border on the panel on which
multimedia files are displayed.

• Media on InfoPane. Select to have pictures displayed as part of the InfoPane.
If you do not select this option, pictures will appear in a separate window.

• Error message file name. Specify the name of a sound file (.wav) that will be
played when an error occurs. If an error message file is not specified with an
ERROR instruction in the multimedia language, the file specified here will be
the default file that is played.

Add a toggle set
You can add toggle sets to the mode library file.

Select the Toggles branch of the tree, and select Edit Add Toggle Set from the
menu (You can also right click on the Toggles branch.) The New Toggle Set
dialog box appears.

Figure 6-24: Adding a new toggle set

Chapter 6: Data Entry Program

300 Blaise 4.5

Complete the items as follows:

• Identifier. Specify a name for the toggle set. The identifier must be a unique
name containing no spaces, and must start with a letter or an underscore.

• Description. Specify a description for the toggle set. This description will
appear in the DEP when the user selects a data entry mode.

• Style. Select the type of toggle set you want to create. You can select
Interviewing, Data Editing (dynamic checking), or Data Editing (static
checking). Each style has default settings, which can be changed after you
create the set.

Click the OK button and the name of the new toggle set appears in the Toggles
branch.

Apply a toggle set in the DEP
To use a toggle set in the DEP, use one of the following methods.

• Specify /T<Toggle set number> on the command line of the DEP.

• In the Data Entry Run Parameters set in the Control Centre, set the Toggles
number to the correct toggle set number.

• In the DEP, select Options Data Entry Mode Self Defined, and select
the layout from the Data Entry Behaviour box.

Delete a toggle set
To delete a toggle set, click on the appropriate identifier and select Edit Delete
Toggle Set. You can also right click on the toggle set to be deleted and select the
option from the pop-up menu.

6.5.4 Mode library file: Layout—Grids, FieldPanes, InfoPanes
Layout styles specify attributes of the items on the DEP window. You can apply
styles for Grids, InfoPanes, and FieldPanes. For each of these, you can adjust the
size, placement, colour, and other characteristics. You can even adjust the
properties of individual components of the each item.

A layout set is a group of layout settings named with a layout identifier. The
layout identifiers in the modelib file are the ones that appear when selecting self-
defined data entry modes in the Data Entry Program (from the DEP menu, select
Options Data Entry Mode Self-defined.)

 Chapter 6: Data Entry Program

Developer's Guide 301

There are default layout identifiers for Grids, InfoPanes, and FieldPanes for both
Interviewing and editing modes, as shown in the following figure:

Figure 6-25: Layout default identifiers

You can edit the default layouts, and apply those to the data model, or you can
define or copy new layouts and then specify those in the LAYOUT section of your
data model. You can even choose different styles for different parts of the same
data model. If you do not have a LAYOUT section, the data model will use the
default settings.

To copy a layout definition, select the definition you want from the tree view.
With the menu command Edit Copy you make the copy. Now select the set in
which the copy must be pasted. This is at a level one up from where the copy has
been made. Use the menu command Edit Past to insert the copy in the tree
view. The new layout definition name will have a ‘(2)’ added to the end of the
name. You can change the name by using the Edit Rename command.

Chapter 6: Data Entry Program

302 Blaise 4.5

For example, in the following sample LAYOUT section, specific Grid, InfoPane,
and FieldPane styles are applied to several fields:

 ...

LAYOUT
 BEFORE Machines
 GRID Elev_x20
 INFOPANE NoPane
 FROM Machines to Earn
 FIELDPANE OneLiner

In the modelib file, these would appear on the Layout branch of the tree, as shown
in the following figure:

Figure 6-26: Layout identifiers in the Mode Library Editor

The layout of the DEP window would then take on the settings for these
identifiers. A complete discussion of the data model's LAYOUT section is in
Chapter 5.

Add a layout set
You can add a layout set to the mode library file. Select the Layout branch of the
tree, and select Edit Add Layout Set from the menu. You can also right click on
the Layout branch.

The New Layout Set dialog box appears. This dialog is identical to the New
Toggle Set dialog box shown in Figure 6-24.

 Chapter 6: Data Entry Program

Developer's Guide 303

Complete the items as follows:

• Identifier. Specify a name for the layout set. The identifier must be a unique
name containing no spaces, and must start with a letter or an underscore.

• Description. Specify a description for the layout set. This description will
appear in the DEP when the user selects a data entry mode.

• Style. Select the type of layout set you want to create. You can select
Interviewing or Data editing. Each style has default settings, which can be
changed after you have created the set.

Click the OK button and the name of the new layout set appears in the Layout
branch. As with behaviour identifiers, the descriptions you provide for the layout
identifiers appear as a choice of Form and Field Layout when selecting self-
defined data entry modes in the DEP.

Apply layout set in the DEP
To use a layout set in the DEP, use one of the following methods

• Specify /P<Layout set number> on the command line of the DEP.

• In the Data Entry Run Parameters set in the Control Centre, set the Page
layout number to the correct layout set number.

• In the DEP, select Options Data Entry Mode Self Defined, and select
the layout from the Form and Field layout box.

Delete a layout set
To delete a layout set, click on the identifier and select the appropriate option
from the Edit menu. You can also right click on the identifier to be deleted, and
select the option from the pop-up menu.

Chapter 6: Data Entry Program

304 Blaise 4.5

Layout–Grids
Use the Grids tabsheet to change Grid settings.

Figure 6-27: Grids tabsheet

A Grid is divided into cells. The page builder uses a Grid as a framework on
which to place FieldPanes, which hold the questions.

There are a few items to note about the relationship between the Grid and the
FieldPane:

• The page builder takes a FieldPane and marks all Grid cells that are occupied
by that FieldPane as used. These cells can then no longer be used by another
FieldPane.

• Each Grid cell can contain, at most, one FieldPane.

• A FieldPane can occupy more than one cell. You can have a Grid cell width
of 40 and a FieldPane width of 80, in which case the FieldPane will occupy
two cells.

• A FieldPane will occupy a whole number of cells. For example, suppose the
Grid is 80 characters wide, the cell width is 20, and the number of columns
(Page width setting) is 4. If you have a FieldPane width of 25, one FieldPane
will have to occupy two cells, and you will only have two columns in your
instrument! So depending on your settings, the number of columns in a Grid
(Grid Page width) will not necessarily be the same number of columns you
see in the instrument.

 Chapter 6: Data Entry Program

Developer's Guide 305

On the Grids tabsheet, in the General section:

• The Grid identifier and its description appear in the Name and Description
boxes. Once the Name has been entered it can not be edited.

• Fill order. Select Horizontal or vertical to indicate the order in which the
FieldPanes will be placed on the Grid. For the user, this also reflects the
direction the cursor will move as answers are recorded.

• Background. Select the background colour of the Grid. This is the colour of
the FormPane. A colour chosen here will override the Grid colour of the
global colour scheme.

• Formpane border. When checked the form pane will have a border when
displayed on the screen.

In the Sizes section:

• View width. Specify the number of characters for the width of the DEP
window. The default is 80. A preview of this width is in the viewer in the
upper right corner of the screen.

• View height. Specify the number of lines in your window. The default is 25.

• Cell width. Specify the width of the cells of the Grid, in characters.

• Cell height. Specify the number of lines in each cell.

• Page width. Specify the number of columns in the Grid.

• Page height. Specify the total number of lines in the Grid.

If you want to use the Grid as a table, also complete the Table section:

• Grid is used for a table. Check this box if the Grid will be used for a table
definition.

• Column headers and Row headers. Select what to use for the column and row
headers of the table. Select Name to use the field name; select Description to
use the field description, the information that appears in quotation marks after
the / in a field definition. When you use the description as the column header
in a table, the width of the table column always adapts to current length of the
corresponding description. Until now the width of a table column was
determined at prepare time and was based on the length of the corresponding
field name.

Chapter 6: Data Entry Program

306 Blaise 4.5

• Colour. Select the colour of the font of the column and row headers.

• Highlight colour. Select the highlight colour of the active row and active
column header.

! If you use your Grid for a table, you cannot use that same Grid for a layout
that is not a table. Define different Grids for table and non-table layouts.

Layout–FieldPanes
Use the FieldPanes tabsheet to adjust settings for FieldPanes. FieldPanes hold the
questions and question values of the instrument, and are the basic elements with
which the page builder fills a page.

Figure 6-28: FieldPanes tabsheet

A preview of the FieldPane appears on the right side of the tabsheet, and changes
as you change properties. You can change the zoom of the preview using the
Zoom box on the speedbar.

In the General section:

• The FieldPane identifier and its description appear in the Name and
Description boxes. Only the Description can be edited.

• Width. Specify the width of the FieldPane. The width of the FieldPane does
not have to correspond exactly to the width of the Grid cell, but a FieldPane
will occupy a whole number of cells. Be careful, though, not to make the

 Chapter 6: Data Entry Program

Developer's Guide 307

FieldPane wider than the width of any Grid on which the FieldPane will be
placed.

• Height. Specify the height of the FieldPane. The height of the FieldPane does
not have to correspond to the cell height of the Grid on which it is placed, but
a FieldPane will occupy a whole number of cells.

In the Controls section, there are nine controls that you can place on the
FieldPane, and you can define settings for each control.

To make a control visible on the FieldPane, select the control name in the control
list and check the Visible box. The properties that you can set for that control then
become visible. All visible controls appear bold in the Controls lister.

The default FieldPane is set to have Field Name, Input Line, Answer Name, and
Remark Point visible, as shown in the following figure. These defaults can be
changed.

Figure 6-29: Default FieldPane controls

The controls and their definitions are as follows:

• Field Name. The name of the field as defined in your data model.

• Field Text. The question text as defined in your data model. This is a rich text
control.

• Field Description. The description text as defined in your data model.

• Input Line. The space where you type the response in the DEP.

• Answer List. A list of possible answers from which you can choose. It is only
visible with enumerated and set questions. This is a rich text control.

• Answer Name. The identifier corresponding to the answer of an enumerated
question. It is only displayed with enumerations.

• Answer Text. The text corresponding to the answer of an enumerated
question. It is only displayed with enumerations. This is a rich text control.

Chapter 6: Data Entry Program

308 Blaise 4.5

• Error Counters. Error counters indicate which errors a question contains.
Error counters can be icons or numbers to indicate route, soft, and hard errors.

• Remark Point. The paperclip icon that indicates that a remark has been made
for a question.

Define the settings for the FieldPane controls as described in the following list.
All possible settings are described, but not all can be applied to each control.

• Visible. Specify whether the control is visible or not.

• Use tag. For the Field Name control, check this box to display the tag that
was specified in your data model.

• Colour. Select a colour for the control.

• Highlight. Select a highlight colour for the control.

• Left. Specify the left position of the control, relative from the left of the
FieldPane.

• Top. Specify the top position of the control, relative from the top of the
FieldPane.

• Width. Specify the width of the control. You cannot specify a width for the
Remark Point.

• Height. Specify the height of the control. You cannot specify a height for the
Remark Point.

• Use for open questions. For the Input Line control, checking this box
indicates to the DEP not to open a separate window to type in the answer to
an Open question. The DEP will use the Input Line.

The Input Line in the data entry program is now capable to handle multiple lines.
It works as follows:

• In the modelib, the height of the Input Line control must be set to a value
greater than one. The height in the General section should be set to the same
height as the Input Line. The specified height corresponds with the number of
lines you want to be visible on the screen.

• You can use the multi-input line also for answering open type questions
instead of using the open question dialog. You can indicate this by checking
the option Use for open questions in the FieldPane.

 Chapter 6: Data Entry Program

Developer's Guide 309

InfoPanes–Layout tabsheet
To change the way the InfoPane appears on the screen, use the InfoPanes
tabsheets.

Figure 6-30: InfoPanes tabsheets

A preview of the InfoPane appears on the right side of the tabsheet, and changes
as you change properties. You can change the zoom of the preview using the
Zoom box on the speedbar.

There are several tabsheets for InfoPanes. The first one, Layout, is for the actual
InfoPane. The other tabsheets allow you to adjust settings for the various dialog
boxes that appear in the DEP.

On the Layout tabsheet, in the General section:

• The InfoPane identifier and its description appear in the Name and
Description boxes. Only the Description can be edited.

• Position: Specify the position of the InfoPane on the screen. This can be: No
InfoPane, Top, Bottom, Left or Right.

• Size: Specify the size of the InfoPane. Depending on the position you’ve
chosen, this specifies either the width or the height of the InfoPane.

• Info pane border: When set the info pane will have a border when displayed
on the screen.

Chapter 6: Data Entry Program

310 Blaise 4.5

On the Layout tabsheet, in the Controls section:

There are three controls that you can place on the InfoPane, and you can define
settings for each control.

To make a control visible on the InfoPane, click on the control name in the
control list and check the Visible box. The properties that you can set for that
control become visible.

The default InfoPane is set to have all three controls visible, as shown in the
following figure. These defaults can be changed.

Figure 6-31: InfoPane controls

The controls and their definitions are as follows:

• Field Text. The question text as defined in your data model. This is a rich text
control.

• Answer List. The list of possible answers from which you can choose. It is
only visible with enumerated and set questions. This is a rich text control.

• Answer Info. The values being entered in the input line.

Define the settings for the InfoPane controls as described in the following list. All
possible settings are described, but not all can be applied to each control.

• Visible. Specify whether the control is visible or not.

• Full Width. Specify whether the control should use the maximum width
possible. When checked, the width property cannot be set.

• Border. When set the control will have a border when displayed on the
screen.

• Use Tag. For the Field Text control, check this box to display the tag that was
specified in your data model.

 Chapter 6: Data Entry Program

Developer's Guide 311

• Background. Specify the background colour of the control.

• Left. Specify the left position of the control, relative from the left of the
InfoPane.

• Top. Specify the top position of the control, relative from the top of the
InfoPane.

• Width. Specify the width of the control.

• Height. Specify the height of the control.

In the Answer List control, you can also specify how many columns the answer
list should have, whether the code numbers that correspond with the labels should
be displayed, and whether the answer list should be balanced (balanced means:
the system will try to put an equal number of choices in each column).

In the Answer Info control, you can also specify the left, right, top and bottom
margin to be used when displaying the answer info text on the screen. All margins
need to be specified in pixels.

On the Lookup, Classify, Long Open, Question Text, Remarks, and Errors
tabsheets, use the remaining tabsheets to adjust the size and appearance of dialog
boxes. Each tabsheet is named for a corresponding DEP dialog box. The
following sample shows the Classify tabsheet, which holds settings for the
Classify dialog box.

Figure 6-32: Classify tabsheet for InfoPanes

For each dialog, set the following properties.

Chapter 6: Data Entry Program

312 Blaise 4.5

In the Bounds section:

• Position. Select a position for the dialog. The position you select here
determines which properties (Left, Top, Width, and Height) you can set.
Normal will use Left, Top, Width, and Height as specified. Centred will centre
the dialog in the DEP window. Left will left-align the dialog in the DEP
window. Top will place the dialog at the top of the window. Right will right-
align the dialog in the DEP window. Bottom will place the dialog at the
bottom of the window. InfoPane will cause the dialog box to cover the entire
InfoPane.

• Left. Specify the left position of the dialog box, relative from the DEP
window.

• Top. Specify the top position of the dialog box, relative from the DEP
window.

• Width. Specify the width of the dialog box.

• Height. Specify the height of the dialog box.

 Chapter 6: Data Entry Program

Developer's Guide 313

For dialogs that contain sliders (the dividing lines within the dialog box),
complete the Sliders section:

• Horizontal. The position of the horizontal slider in the dialog box.

• Vertical. The position of the vertical slider in the dialog box. This is found on
the Errors tabsheet only.

On the Errors tabsheet, complete the Errors section:

• Select One Error or All Errors to view how the properties appear for each
error viewing mode in the DEP. One Error shows the dialog that appears
when an error is encountered during data entry. All Errors shows the dialog
that appears when you select to show errors in the DEP.

Add a Grid, FieldPane, or InfoPane
To add a new Grid, FieldPane, or InfoPane, follow the same procedure for adding
a layout set. Select the Grid, FieldPane, or InfoPane branch of the tree, and select
the appropriate option from the Edit menu. You can also right click on the branch
of the tree.

The identifier you give to a component must exactly match the identifier that is
specified in the data model's LAYOUT section.

Delete a Grid, InfoPane, or FieldPane
To delete a Grid, InfoPane, or FieldPane, click on the identifier and select the
appropriate option from the Edit menu. You can also right click on the identifier
to be deleted, and select the option from the pop-up menu.

6.5.5 Viewing pages in the Mode Library Editor
You can preview your pages within the Mode Library Editor as you change the
modelib file. This way, you don't have to run the DEP to inspect the results.

Open data model
To view the pages of your data model, first open the data model in the Mode
Library Editor by selecting File Open data model. The Mode Library Editor
will automatically prepare the contents of the pages after loading the data model.

Chapter 6: Data Entry Program

314 Blaise 4.5

A new branch called Pages appears in the tree. Double click the Pages branch to
expand it. The tree will expand to show the number of pages in your data model.
If you have a primary key or parallel blocks in your data model, these appear as
separate branches under Pages, as shown in the following figure:

Figure 6-33: Pages branch

Prepare data model in Mode Library Editor
Each time you make a change to your mode library file, you need to update the
layout information so that the Mode Library Editor can build pages for you to
view.

Click the Prepare speed button on the toolbar, and the page builder updates the
layout changes you have made.

Figure 6-34: Prepare speed button

Prepare

View pages
Click one of the pages listed in the tree view to see how the page appears in the
DEP. A preview of the page appears on the right side of the window, as shown in
the following figure:

 Chapter 6: Data Entry Program

Developer's Guide 315

Figure 6-35: Viewing pages in the Mode Library Editor

You can view each page of the instrument several ways: by clicking the
appropriate Page branch on the tree, by selecting an option from the Navigate
menu, or by clicking the appropriate speed button.

In the same way, you can also highlight individual fields to see their layouts. Use
the Navigate menu, the speed buttons, or click on the field on the preview
window.

! You might notice there are some settings, such as colour, that you can view
without clicking the Prepare speed button. These are run-time settings.
Others are considered prepare-time settings and will not be visible until
you click Prepare.

Page and question properties
You can look at the properties of a page or question of your instrument to see
which layouts, behaviour identifiers, and specific Grids, FieldPanes, and
InfoPanes were used.

Select a page from the Pages branch, and right click on the preview of the page.
A pop-up dialog box appears.

Chapter 6: Data Entry Program

316 Blaise 4.5

To see properties for the entire page, select Page Properties. To see properties for
the currently displayed field, select Question Properties.

A dialog box appears, and shows the individual properties of that page or that
field. Each dialog box is displayed in the following figure:

Figure 6-36: Page Properties

 Chapter 6: Data Entry Program

Developer's Guide 317

Figure 6-37: Question properties

6.5.6 Common screen layout tasks
This section describes how to accomplish three common tasks that change the
appearance of the DEP window:

• Raise or lower the default dividing line

• Change the number of columns in the FormPane

• Remove the InfoPane

The following examples note which modelib settings need to be adapted, and
illustrate how the screen elements work together.

Raise or lower the dividing line
A common requirement is to move the default location of the horizontal dividing
line of the DEP either up or down. For example, some question texts and
interviewer instructions are long. If there is not enough room for the text in the
upper part of the screen, the interviewer can still read it, but would have to scroll
to see all of it. To avoid this situation, you can move the horizontal line down.
Alternatively, if you have short question text you can move the horizontal
dividing line up to display more data on the page.

Chapter 6: Data Entry Program

318 Blaise 4.5

In order to move the line up or down, you have to use a combination of Grid and
InfoPane definitions that work together. In layout.bla, there is a Grid
(Two_x8) for 8 rows of fields in the FormPane and an InfoPane (For8Rows) that
complements the 8 rows. In the same mode library file, there is a Grid definition
(Two_x12) that allows 12 rows of fields in the FieldPane and an InfoPane
(For12Rows) that complements the Grid.

To raise or lower the dividing line, change the size of the InfoPane (the Size box
in the General section of the InfoPane Layout tabsheet). You will also usually
need to change the height of the Grid (Page height setting on the Grid tabsheet)
to compensate for the height of the InfoPane. If you don't adapt the height of the
Grid as well as the InfoPane, you might end up with vertical scrolling bars in the
FormPane.

The default InfoPane size is 11, which divides the DEP window about in half.

• To raise the dividing line, decrease the InfoPane size and increase the height
of the Grid.

• To lower the dividing line, increase the InfoPane size and decrease the height
of the Grid.

For example, the following sample shows an InfoPane size of 7.

Figure 6-38: Dividing line moved up

 Chapter 6: Data Entry Program

Developer's Guide 319

The following sample shows an InfoPane size of 16:

Figure 6-39: Dividing line moved down

Change the number of columns in the FormPane
To change the number of columns in the FormPane, change the number of
columns in the Grid (Page width setting.). You might also need to adjust the
Grid's cell width, the number of rows in the Grid, the width of the FieldPane used
with the Grid, and possibly the FormPane font. Each time you adjust the
FieldPane width, also check the properties of the FieldPane's components and
adjust them as needed.

Chapter 6: Data Entry Program

320 Blaise 4.5

For a one-column FormPane, set the Grid's Page width to 1. Again, adjust the
Grid's cell width and the FieldPane width to make sure it all fits together
properly. The following sample shows a one-column FormPane:

Figure 6-40: One-column FormPane

For this example:

• Grid Page width = 1

• Grid Cell width = 78

• FieldPane Width = 77

 Chapter 6: Data Entry Program

Developer's Guide 321

For a two-column FormPane, adjust the Grid's Page width again. The following
sample shows a two-column FormPane:

Figure 6-41: Two-column FormPane

For this example:

• Grid Page width = 2

• Grid Cell width = 39

• FieldPane Width = 38

Chapter 6: Data Entry Program

322 Blaise 4.5

The following sample shows a three-column FormPane:

Figure 6-42: Three-column FormPane

For this example:

• Grid Page width = 3

• Grid Cell width = 26

• FieldPane Width = 25

Remove the InfoPane
If you do not want the InfoPane to display at all, set the position of the InfoPane
to No InfoPane (the Position setting on the InfoPane Layout tabsheet). You might
do this if your question text is short, and you want a form-based display.

For example, the following shows a DEP window without an InfoPane:

 Chapter 6: Data Entry Program

Developer's Guide 323

Figure 6-43: No InfoPane

6.5.7 Applying a mode library file
Applying a modelib file is a two-step process.

Specify which modelib file to use
There are three ways in which Blaise looks for a mode library file and there is an
order in which it does so.

• If you specify a modelib file to use in the Project Options
in the Control Centre, Blaise will use that file. (Specify the file name in the
Mode library box.)

• If a modelib file is not specified in Project Options, Blaise
searches the working folder for the exact file name modelib.bml. Unless
you specify a specific file name in Project Options, Blaise will only search
for and use the file modelib.bml.

• If a file is not specified in the Project Options and the file
modelib.bml is not in the working folder, Blaise searches the Blaise system
folder for the exact file name modelib.bml.

Chapter 6: Data Entry Program

324 Blaise 4.5

Prepare the data model under the modelib file
Once you have specified the modelib file, prepare your data model. The settings
from your modelib file will be incorporated into the .bdm file.

6.5.8 Detaching/Attaching a mode library file from a data model
If you have a data model and do not have the modelib file under which it was
prepared, you can use the Mode Library Editor to extract the modelib information
from the data model.

From the menu select File Detach Data Model. The Data Model line will
disappear leaving you with an untitled Mode Library. You can now modify the
mode library settings and save the file under a different name.

If you have a mode library you wish to apply to a data model, open a mode
library and select File Attach Data Model. In the Open dialog box select the data
model you want. The mode library settings will be applied to the data model
when you select File Save Data Model.

6.6 Data model properties

In Chapter 2 on the Blaise Control Centre, various functions related to projects
were discussed in Section 2.2.6. One element of the Project system was skipped
because it refers to features of the Blaise data model that were only introduced in
this chapter. Here we will backtrack to cover the Control Centre’s Project >
Datamodel Properties features.

A large number of default display characteristics of a data model can be
customised. Examples include:

• Numeric entries displayed with commas or period to separate groups of
characters, or as a currency value.

• Date and time values displayed with different separators and with or without
AM/PM format.

• Strings displayed with various formatting characters such as a telephone
number (999) 999-9999. These formatting patterns are called edit masks.

This is done using settings in the Data model Properties form. The properties are
then saved to a file <data model name>.bxi.

 Chapter 6: Data Entry Program

Developer's Guide 325

First, open the data model in the Control Centre. Select Projects Datamodel
Properties from the Control Centre menu, and the Data Model Properties dialog
appears.

Figure 6-44: Datamodel properties dialog

6.6.1 Set properties for system and user-defined types of the data
model

Select the Types tab. The left part of the dialog displays a tree view, which allows
you to select the type definition to view or modify. In the branch System types
you can select one of the predefined types (date, enumeration, integer, real, set,
string, or time type); in the branch User Defined you can select one of the user
defined types of the data model. The right part of the dialog displays the
information for the selected type definition. For each type at least the following
information is displayed:

• Input type. This displays the base type to be used for the input line in the DEP
for the selected type definition. The following base types are available: string,
date, time, real, integer, enumeration and currency. Blaise does not support a
currency type in the data model, but the input line does support currency for
data entry. If the type defined in the data model is a REAL or INTEGER, you

Chapter 6: Data Entry Program

326 Blaise 4.5

are allowed to switch the base type from real or integer to currency. For
instance for a type TTelephone = STRING[20] the base type string will be
displayed, and for a type MyNumber = REAL[8,2] the base type real will be
displayed. In the latter case you are allowed to change the base type to
currency.

• Alignment. You can set this to left or right. When set to right, data entry will
take place on the right side of the input line. This can be handy when entering
numerical data.

• Dropdown. You can set this to (none), dropdown, dropdown list, action and
date picker (this option is only available for datetype types). When you select
dropdown or dropdown list, the input line will have a dropdown list with
predefined values that you can select from. Use dropdown if you want a list
of values like a list box but you don’t want to see the list of values until you
push the down arrow button. See the on-line help for more details.

• Dropdown count. You can set the number of items to show in the dropdown
list. If the actual number in the list is larger, a scrollbar will be used.

• Password char. Indicates the character, if any, to display in place of the
actual characters in the field.

For some of the input types a number of other properties are available.

• String. You can set the edit mask and the character to display for a blank
character.

• Time. You can set the Time separator, time style, hour format, hour leading
zero, and AM string and PM string.

• Real. You can set the Digit grouping (digit grouping symbol and digits per
group), negative sign symbol, real format, decimal symbol.

• Currency. You can set the Digit grouping (digit grouping symbol and digits
per group), negative sign symbol, decimal symbol (for real based currency
fields only), currency symbol, and currency format.

• Integer. You can set the Digit grouping (digit grouping symbol and digits per
group), negative sign symbol, integer format, and whether to display leading
zeros.

• Date. You can set the Date separator, date style, leading zero settings, and
year style. If the year style is Regional settings or 2-digits, the century button
is active to specify the way the system should determine the century in case
the user does not specify the century.

 Chapter 6: Data Entry Program

Developer's Guide 327

• Enumeration. You can set the Hide empty categories option. When this
option has been set, all categories that have an empty text are not displayed in
the answer list in the data entry program.

• Set. You can set the separator. You can also set the Hide empty categories
option. When this option has been set, all categories that have an empty text
are not displayed in the answer list in the data entry program.

In the preview box you can see how the input line in the data entry program will
look.

 Figure 6-45: Datamodel properties Types page

6.6.2 Specify text for parallel blocks
You can specify text that will display in the Parallel Blocks dialog of the DEP.
By default, when parallel blocks are selected in the DEP, the parallel block name
or the identifier that is declared in the data model appears in the dialog box. Here
you can specify a more descriptive text for the parallel block.

Chapter 6: Data Entry Program

328 Blaise 4.5

The names and specified text for the parallels are stored in a file with a .bxi
extension. Each time you prepare the data model, the system adds or removes
parallels and tracks the text that was specified.

Figure 6-46: Data model properties--specifying parallel text

The top part of the dialog displays a list of the available parallels (including the
main parallel). If you have specified an array-based parallel, all elements of the
array will be displayed in the list. For each entry you can specify a long and a
short text to be used in the DEP. This text may contain fills. The fill must be
based on a fully qualified field name. A possible subscript in such a name must be
a numerical constant.

The long text is the text that has to be displayed in the parallel dialog of the DEP.
If no text has been specified, the name of the parallel will be displayed. The short
text is the text that has to be used as the caption of the tab for the parallel
(Parallels are displayed on tab sheets if the style setting Show parallels on tab
sheets has been set in the mode library).

You can specify three extra settings:

• Quit form at end. When set, the DEP will prompt you to quit the form as soon
as the end of this parallel has been reached. You will not be directed to the

 Chapter 6: Data Entry Program

Developer's Guide 329

parallel forms dialog in this case. When the setting Disable parallel quit
button has been set in the mode library, you have the same parallel behaviour
available during CATI interviewing.

• Go back to main parallel at end. When this option is set, the DEP will
automatically go back to the active field of the main parallel when the end of
the current parallel has been reached.

• Do not show on tabs. When this option is set, the parallel will not be
displayed on a tab sheet. This setting will be used only when the style setting
Show parallels on tab sheets has been set in the mode library.

All mentioned settings are not available for the main parallel. The quit form at
end and the go back to main parallel at end options are mutually exclusive.

The system does not check the fills specified in the text—this is done by the DEP.
If a field cannot be found in the data model, the fill will be skipped.

! To use the parallel text settings in the DEP, make sure that the .bxi file is
in the same folder as the corresponding prepared data model. If the .bxi
file is not present or if no text has been specified, the parallel block name
will be displayed.

For more details on parallel blocks, see Chapter 4.

6.6.3 Languages properties
On this tab you can specify which of the defined languages needs to be accessible
for the interviewer in the DEP. These languages are accessible in the language
dialog or via the previous and next language commands in the DEP. You can
select a language for the DEP by checking the appropriate check box in front of
the language identifier in the lister you see on the screen. At least one language
needs to be checked.

Only the accessible languages can be activated via the command line parameter
/L. The execution of the DEP will fail if you try to select a language via the
command line that is not accessible.

Chapter 6: Data Entry Program

330 Blaise 4.5

Figure 6-47: Datamodel properties—Languages

6.6.4 Status bar properties
On this tab you can specify the text for the user defined status bar panels. This tab
is only visible if you have specified in the mode library that you want to display
user defined panels on the status bar.

For each user-defined panel you can specify a text in the Value column. This text
may contain fills. The fill must be based on a fully qualified field name. A
possible subscript in such a name must be a numerical constant. The fills will be
replaced run-time by the actual current value.

 Chapter 6: Data Entry Program

Developer's Guide 331

Figure 6-48: Data model properties—Status bar

! The system does not check the fills specified in the text. This is done by the
DEP. If the field can not be found in the data model, the fill will be
skipped.

6.7 DEP Configuration File

The DEP configuration file is a customisation file that can be used for DEP font
and colour enhancements and behaviour toggles. These same settings can also be
set in the modelib file, but any settings in the DEP configuration file will override
the settings stored in the DEP modes file (.bdm). Using the DEP configuration file
means you can change aspects of the instrument's behaviour without re-preparing
or replacing instrument files.

The DEP Configuration Program (or DEPCfg, for short) is the Blaise tool that
you use to create and edit a DEP configuration file. The DEP configuration file

Chapter 6: Data Entry Program

332 Blaise 4.5

has a .diw file extension. The DEPCfg Program works in conjunction with the
Mode Library Editor. You can use the Mode Library Editor to set up a modelib
file, and you can then use DEPCfg to create a .diw file to override the modelib
settings for specific data models. You can override the Style and Toggle settings,
and the Layout colour settings. You cannot set any other Layout settings in the
DEPCfg Program.

To work on a configuration file, you must open a data model. This reflects that
idea that a DEP configuration file is based upon a data model, or a class of data
models, prepared with the same mode library file.

6.7.1 Using the DEP Configuration Program
This section describes how to open, save, and set options in the DEP
Configuration Program.

Open the DEP Configuration Program
To open the DEP Configuration program, select Tools DEP Configuration
from the Control Centre menu. The DEP Configuration window appears.

Figure 6-49: DEP Configuration Program

 Chapter 6: Data Entry Program

Developer's Guide 333

This program looks very similar to the Mode Library Editor, and, in fact, has
many of the same features.

Open or create a configuration file
To work on a DEP configuration file, you must first open a data model in the
DEP Configuration Program. Opening the data model allows DEPCfg to read the
modelib settings.

Select File Open data model, and select a data model's .bmi file. A branch
called Pages appears in the tree view on the left.

Open or create a configuration file by selecting File Open Configuration File or
New Configuration File. If you are opening a file, select a file with a .diw
extension.

The tree view then displays Style, Toggles, Layout, and Pages branches, as shown
in the following figure:

Figure 6-50: Creating a .diw file in the DEPCfg Program

• The Style branch defines fonts, colour schemes, and DEP options.

• The Toggles branch defines behaviours.

Chapter 6: Data Entry Program

334 Blaise 4.5

• The Layout branch shows the settings for the size and appearance of Grids,
FieldPanes, and InfoPanes.

• The Pages branch shows the effects on the forms of any changes to the Style
or Layout.

Expand the branches on the tree view on the left. The behaviour identifiers that
you see in the Toggles branch are the identifiers that were created in the modelib
file that the data model was prepared under. The same is true of the Layout
branch. It displays the layout sets for that data model's modelib file, as shown in
the following figure:

Figure 6-51: Layout identifiers in the DEPCfg Program

Save the configuration file
Once all changes have been made, save the configuration file by selecting File
Save.

 Chapter 6: Data Entry Program

Developer's Guide 335

Meta search path option
If you open a data model that uses other data models, you can set an option to
have the program search for the meta files of the other data models. Select
Options Environment Options, and type in a search path.

6.7.2 Editing a DEP configuration file
The settings for Style and Toggles in the DEP Configuration Program are
identical to the settings in the Mode Library Editor.

• You can change all Style settings, including fonts, options, and colour
schemes.

• You can change and edit all Toggles. If you want behaviours in the DEP
configuration file to override the behaviours in the modelib file, the behaviour
identifiers (the names you specify when you add a toggle set) must exactly
match the behaviour identifier names in the modelib file. If the names are
different, the behaviours will not be overridden.

• The only layout settings you can edit in the DEPCfg Program are colours.
You can view the layout settings, but you cannot change them.

• You can also view pages in the DEPCfg Program.

Refer to the appropriate sections under section 6.5 Mode Library File for specific
descriptions of Style, Toggles, Layout, and Pages.

6.7.3 Applying a DEP configuration file
There are a few ways to apply the configuration file to your data model.
Remember that all settings in the .diw file will override the corresponding
settings in the modelib file when the .diw is applied.

Apply to all data models
To use the .diw file for all data models run from the Control Centre, specify the
file name in the run parameters. This will apply the configuration file to each data
model that is run from the Control Centre.

Apply to specific data models
To apply a .diw file to just one data model, use the command line parameter /C
when you invoke the dep.exe command to run the DEP. For example, to run the

Chapter 6: Data Entry Program

336 Blaise 4.5

data model ncs07.bla and apply the file ncs.diw, you would use the
command:

DEP NCS07 /CNCS.diw

As another example, you could apply different .diw files to the same data model
to achieve different behaviour effects. For example, if you had defined two .diw
files, ncsint.diw for interviewing and ncsedit.diw for data editing, you
could run the DEP for the data model ncs97.bla with the command line
parameters:

DEP NCS97 /CNCSInt.diw /T1 /P1 (for interviwers)

DEP NCS97 /CNCSEdit.diw /T2 /P2 (for data editors)

In this example, /T1 and /P1 point to the first set of layouts and behaviours in the
modelib file, which are for the interviewer. The /T2 and /P2 parameters point to
the second set of layouts and behaviours in the modelib file, which are for the
editor.

The command line parameters could be associated with a Windows® shortcut, a
Maniplus command, or a batch file. See Appendix A for a list of all command
line parameters.

6.8 Menu File and the DEP Menu Manager

The DEP menu file controls the menu and speed buttons available in the DEP.
With this file you can enable or disable a menu item, clear a submenu from the
menu altogether, assign a function key to a menu item, assign shortcut keys to a
menu command, and assign speed buttons to the Speedbar. You can also define a
new menu item, and link the menu item to an executable, a DLL procedure, or a
parallel block.

There are several menu files provided with the Blaise system. Depmenu.bwm is
the default menu file. For CATI surveys, Catimenu.bwm is the default. There is
a third file provided, Capimenu.bwm. You can accept the default file, use one of
the other files, or edit the default file and apply it to different data models.

 Chapter 6: Data Entry Program

Developer's Guide 337

The Edit|Update is an option that can be used to update a menu file to reflect the
current menu of the DEP. The option will also change the menu texts (caption and
hint) to the currently active system language. Edit|Update is available after you
have loaded a menu file and as long as no changes have been made to the file. All
user defined menu entries remain present.

For example, if you have an old menu file and you want to make use of the new
auto dial menu entry you can choose the Edit|Update option. The auto dial option
(and the new Send option) will be added to the menu in the tree view.

If you edit the default menu file, save it to a new file name so that you can revert
to or use the default settings when necessary.

6.8.1 Using the DEP Menu Manager
To open the DEP Menu Manager, select Tools DEP Menu Manager from the
Control Centre menu. The DEP Menu Manager window appears. It is a blank
window with several menu options.

To open or create a menu file, select File Open from the menu, and select a
menu file with a .bwm extension. Create a new file by selecting File New. A
tree view of the menu file appears on the left, and properties of each menu item
are on the right.

Chapter 6: Data Entry Program

338 Blaise 4.5

Figure 6-52: DEP Menu Manager

There are two tabsheets: Menu items and Speed buttons. These are described in
the following sections.

To save your file, select File Save from the menu.

6.8.2 Editing and adding menu items
On the Menu items tab, the Treeview of menu box contains the default menu
options Forms, Answer, Navigate, Options, and Help. Expand and collapse the
menu items by clicking the plus or minus sign that appears to the left of the text.
Menu items that have a red X next to them are currently not visible in the DEP.

Editing menu items
To edit the existing menu items, select the menu item to be edited, and complete
the menu item properties as described as follows:

 Chapter 6: Data Entry Program

Developer's Guide 339

In the Menu item properties section:

• Caption. Type the caption that you want displayed for the menu item. To set a
shortcut key for one of the letters, insert an ampersand (&) before the letter.

• Hint. Type the words that you want to appear in the status bar of the DEP
screen when the menu option is selected.

• Shortcut. Select a function key or short-cut key from the drop down list.

• Visible. Select True to make the menu option visible in the DEP; select False
to make the option not visible. When you choose False, a red X appears on
the menu option in the tree. You can also double click on the menu in the tree
to toggle the visibility on and off. If you choose False for a top-level menu,
all submenu options under the menu item will also be invisible. If you then
make the top-level menu visible again, you must make each submenu item
visible again individually.

In the Speed button properties section:

• Hint. If the menu item has a corresponding speed button on the Speed buttons
tab, specify the text that should appear when the cursor is placed on the speed
button.

Adding a user-defined menu entry
You can add a user-defined menu entry under one of the predefined main menu
items or to a user-defined main menu item. User-defined menu items can invoke a
DLL procedure, start an executable, invoke a COM object method, invoke an
advanced DLL procedure, or start a parallel block. In order to invoke a COM or
advanced DLL procedure you must have the Blaise Component Pack installed.

Place the cursor at the location in the tree view where you want to add a new
entry. From the menu, select Edit Add Menu Entry. A space for the new menu
item appears above the cursor.

Move the new menu item up and down within the submenu by pressing F7 and
Shift-F7. You can also right click on the tree view to add, delete, or move menu
items.

Complete the menu item properties as described above. User-defined menu
entries have some extra properties that can be set, which are described as follows:

• Identifier. If you want to link a WinHelp item to the menu entry, specify the
identifier. If you leave this field empty, no help topic will be linked to the
menu entry.

Chapter 6: Data Entry Program

340 Blaise 4.5

• Kind. Select the kind of action to be performed by the menu entry: Invoke a
DLL procedure, Start executable, Start parallel Invoke a DLL procedure
(advanced), or Invoke COM object method. Each of these menu entry types
has its own properties, which are described in the following sections.

Menu properties for starting a DLL procedure
For menus that start a DLL procedure, the following properties can be set:

• DLL name. Specify the name of the DLL that contains the procedure you
want to invoke. You can type the DLL name or browse for it.

• Procedure name. Specify the name of the procedure that you want to invoke.
If the name of the DLL is specified, the drop down list will contain all
available procedures in the DLL. If you type the name of the DLL yourself,
be sure to specify the correct case for each character of the procedure name.

! The procedure that will be started must have the same standardised header
as the alien procedures used by the Data Entry Program. The system will
pass only the information of the currently active field to the DLL. The
procedure in the DLL will be called in edit phase. For more information
on setting up alien DLL procedures, see the file DEPDll.rtf in the \Doc
folder of the Blaise system folder.

Menu properties for starting an advanced DLL procedure
For menus that start an advanced DLL procedure, the Blaise Component Pack
must be installed. The following properties can be set:

• DLL name. Specify the name of the DLL that contains the procedure you
want to invoke. You can type the DLL name or browse for it.

• Procedure name. Specify the name of the procedure that you want to invoke.
If the name of the DLL is specified, the drop down list will contain all
available procedures in the DLL. If you type the name of the DLL yourself,
be sure to specify the correct case for each character of the procedure name.
In addition, the procedure must have a standardised header with two
parameters: IBlaiseDatabase and IDepStatus. Please read the help provided
with the Blaise Component Pack for more information on these two
parameters.

Menu properties to invoke a COM object method
For menus that invoke an advanced COM Object Method, the Blaise Component
Pack must be installed. The following properties can be set:

 Chapter 6: Data Entry Program

Developer's Guide 341

• Prog ID. Specify the ProgID that contains the method you want to invoke. Be
sure to write the correct case for each character of the ProgID.

• Method name. Specify the name of the method that you want to invoke. Be
sure to write the correct case for each character of the method name. The
procedure that will be started must have a standardised header with two
parameters: IBlaiseDatabase and IDepStatus. For more detailed information,
refer to the available help in the Blaise Component Pack.

Menu properties for starting an executable
For menus that start an executable, the following properties can be set:

• Command. Specify the name of the executable plus the command line
parameters. You can use the following macros in the command:

Chapter 6: Data Entry Program

342 Blaise 4.5

Figure 6-53: List of command macros

$FieldName Will be replaced by the local name of the current
active field in the DEP when you choose this
menu entry.

$FieldTag Will be replaced by the local tag name of the
current active field in the DEP when you choose
this menu entry.

$FieldValue Will be replaced by the value of the current active
field in the DEP when you choose this menu entry

$Value(FieldName) Will be replaced by the value of the field
FieldName when you choose this menu entry.

$DataName Will be replaced by the name of the current active
database in the DEP when you choose this menu
entry.

$DictionaryName Will be replaced by the name of the current active
data model in the DEP when you choose this
menu entry.

$DictionaryVersion Will be replaced by the version information of the
current database. This version information is the
version information of the dictionary when the
database was created. The version information
has the following format: Ma.Mi.Rel.Bn. Ma =
Major version number, Mi = Minor version
number, Rel = Release number, Bn = Build
number. Version information is specified in Project
Options. See section 2.2.6

$DataVersion. Will be replaced by the version info of the current
database. This version info is the version info of
the dictionary when the database was created.
The version info has the following format:
Ma.Mi.Rel.Bn. Ma = Major version number, Mi =
Minor version number, Rel = Release number, Bn
= Build number. See section 2.2.6

$Primary Will be replaced by the value of the primary key of
the current form (if available) when you choose
this menu entry. The format of the primary key is
the same as the format of key the DEP accepts on
the command line (/K option). If a space is present
in the primary key, it will be placed between
double quotes.

 Chapter 6: Data Entry Program

Developer's Guide 343

! If the value of a macro cannot be determined, it will be removed
(replaced by empty).

• Wait until finished. Select to have the DEP wait (DEP will not respond at all)
until the program that has been started has finished.

• Minimise on run. Select to have the DEP window minimise when you choose
this menu entry.

Menu properties for starting a parallel block
For menus that start a parallel, the following property can be set:

• Parallel. Specify the name of the parallel block that you want to start. If you
leave this property empty, the main parallel will be attached to this menu
item. When you choose this menu entry, the DEP will search for a parallel
with the specified name. If the parallel is not found, or the parallel is currently
not accessible, the menu entry in the DEP will be greyed out.

Delete a user-defined menu entry
To delete a user-defined menu entry, select the entry you want to remove in the
tree view, and select Edit Delete Menu Entry. You can also right click on the
menu item, and select from the pop-up menu.

6.8.3 Editing and adding speed buttons
On the Speed buttons tabsheet, there is a list of speed buttons currently available
in the menu file, as shown in Figure 6-49.

Chapter 6: Data Entry Program

344 Blaise 4.5

Figure 6-54: Speed buttons tabsheet in the DEP Menu Manager

Select a category on the left to see the available buttons.

To add speed buttons, drag them from the Buttons list to the Speedbar box. To
remove buttons, drag them from the Speedbar.

A note about CATI menu files
If you develop a menu file for a CATI survey you must use a CATI menu file.
You need the menu option Get telephone number if you want forms to be
delivered automatically to the interviewer. The menu options Get and Browse are
also suggested. The Get option allows the interviewer to request a form by a
primary key. The Browse option allows interviewers to browse through all the
forms in the data file, based on either a primary or a secondary key.

There is a CATI menu file, catimenu.bwm, in the Blaise system folder. By
default, the system uses the catimenu.bwm file when running a CATI
instrument. You can use this menu or edit it to suit your needs. See Chapter 10 for
more information on using CATI menus.

 Chapter 6: Data Entry Program

Developer's Guide 345

6.8.4 Applying a menu file

Apply to all data models
To use the menu file for all data models run from the Control Centre, specify the
file name in the DEP run parameters. This will cause each data model that is run
from the Control Centre to use that file.

Apply to specific data models
To apply a menu file to a specific data model, use the command line parameter
/M when you run the dep.exe command. For example, to run the data model
ncs07.bla and apply the menu file ncs.bwm, you would use the command:

DEP NCS07 /Mncs.bwm

6.9 Screen Layout Considerations

It is important to keep in mind that screen layout is a combination of many
factors.

6.9.1 Data density in the page
The density of data in the FormPane (page) is determined by the Grid definition.
Increased data density is popular with interviewers for several reasons. They get a
good overview of the instrument. They can see the routing unfold as data are
entered. They can see the responses to several or many previous questions. The
arrow keys or mouse are very effective for navigating within the page. The page
up and page down keys are extremely effective for navigating between pages.
Though it is possible to find situations where another screen style is needed, the
default screen presentation is very effective for many applications.

6.9.2 Font sizes
The measures used in the mode library file for the number of rows for the vertical
dimension and the number of characters for the horizontal dimension are based on
pixels. A scaling factor is calculated based on the font size set in the DEP
configuration file.

One font setting that is extremely important is the font type and size set in the
Style setting of the Mode Library Editor. By changing this setting, you can allow

Chapter 6: Data Entry Program

346 Blaise 4.5

space for many more or many fewer screen elements, such as the number of
fields. Depending on the resolution and size of the screen, you can increase the
number of fields and other screen elements. You should experiment with various
combinations of mode library style definitions.

6.9.3 New pages created for new Grids
Every time a new Grid definition is applied, a new page is generated in the DEP.
Thus if you move the horizontal dividing line up or down from one field to the
next, the subsequent fields will be placed on a new page.

6.9.4 Screen resolution
Screen resolution varies from one computer to another. An application prepared
on one computer can take up a smaller or larger amount of screen space on
another computer. There are two ways to provide for this. One is to have a
separate DEP configuration file, with style, tab, font, type, and size, for each
possible screen resolution. Another way to accommodate these differences is to
prepare the application on a computer with a low screen resolution. Moving up to
a higher resolution screen is automatic, but the reverse is not true.

6.9.5 Summary of screen layout factors
The following summarises some the screen layout factors to be considered when
designing DEP window presentations.

LAYOUT section
In the LAYOUT section of the data model, you refer to the specific possibilities
that are in the modelib file and prepare the model using that modelib file. If you
don’t have a LAYOUT section in the data model, it will use the first layout
possibility in the modelib file.

Modelib settings
The modelib settings affect the size and appearance of the FormPane, InfoPane,
FieldPane, and Grid, and DEP behaviours. Be sure to prepare the data model
using the correct modelib file, and that all settings work together.

 Chapter 6: Data Entry Program

Developer's Guide 347

Configuration file
Configuration file settings override behaviour, text, and style settings that were
set in the modelib file.

Hardware
Keep in mind that the type of computer used for development is not likely to be
the same type of computer used when the instrument is run. Differences in
monitor size and resolution will affect how an instrument appears.

Windows settings
Blaise will use the Windows® regional settings for time and for date, if no other
format is specified under the data model properties in the Control Centre. For
more information, see Chapter 6, section 6.6 Data model properties.

DEP Run Parameters
When you run the DEP from the Control Centre, you can set Run parameters.
This is one way to apply different configuration and menu files to data models
while you develop and test.

To set run parameters, open the Control Centre. Select Run Parameters from
the menu and the Run Parameters dialog box appears. Select the Data Entry tab
and set parameters as described in Figure 6-55.

Chapter 6: Data Entry Program

348 Blaise 4.5

Figure 6-55: DEP Run Parameters

In the Files section:

• Main data file. Specify the path and name for the data file. If left blank, the
data file will have the same name as the data model.

• Menu file. Specify the path and file name of the menu file to use. If left blank,
Blaise uses the default menu file depmenu.bwm, or for CATI instruments,
catimenu.bwm.

• Configuration file. Specify the path and file name of a DEP configuration file
to use.

• External path. If the data model uses an external file, type the path to use for
the external data file.

Key
In the Key section:

• Specify a form to retrieve using the value of its primary key (as defined in the
data model) or join ID (its internal record number). Specify a value in the
Primary key or join ID box, then click the New Form with key box to retrieve
on primary key, or the Start form with join ID box to retrieve on the join ID.
This will cause that form to open when the DEP runs.

 Chapter 6: Data Entry Program

Developer's Guide 349

Options
In the Options section:

• Browse forms. Select to allow users to scroll through all the forms and select
a specific one when the DEP is run.

• Disable CATI. Select to run the DEP in interviewing mode. Use this option if
your instrument contains the phrase INHERIT CATI and you want to run the
DEP without using the call scheduler.

• Quit after first form. Select to cause the DEP to close after one form is
completed.

• Get form mode. Select to run the DEP in Get form mode, causing the
interviewer to retrieve existing forms.

• Show watch window. Instruct the DEP to activate the watch window. The
watch window can be used to display the values of fields and auxfields in
your data model and it can display which blocks have been checked and
which external files have been access.

• Read only. Read-only mode for forms. When set all existing forms in the file
can be read, but not modified or saved.

• Go to end of form. Go directly to last field on the route that needs to be
answered. This option is similar to pressing the END key directly after
loading a form.

• Disable image link. Disable Image link of the DEP if necessary. Blaise can
show images of scanned forms in a Blaise data entry session. This
functionality is only available when the Blaise Component Pack is installed
and is enabled by using the keyword, INHERIT followed by IMGLINK.
INHERIT IMGLINK includes a special block with fields that are necessary for
viewing scanned forms. For more information on Image links, see the on-line
help topics Showing form images in the DEP.

Chapter 6: Data Entry Program

350 Blaise 4.5

Design
In the Design section:

• Page layout. Specify the number of the layout to be used from the modelib
file.

• Toggles. Specify the number of the behaviour toggle from the configuration
file.

• Language. Specify a language number to be used, as specified in the data
model.

Form filter
In the Form filter section one may specify which forms will be presented using
the Dep menu selections Forms > Next Form (F7) or Forms > Previous Form
(Alt-F7). The filter settings don’t apply for menu selection Browse forms. The
settings are:

• Clean. Include clean forms in the form read filter.

• Dirty. Include dirty forms in the form read filter.

• Suspect. Include suspect forms in the form read filter.

• Not checked. Include not checked forms in the form read filter.

Start parallel
In the Start parallel section:

• Start parallel. Go directly to the parallel specified when entering the form.
This option will only work when the key page is not activated when starting
the DEP and when the specified parallel can be reached.

Load and Store buttons
You can use the load button to read the command line parameters from a Blaise
command line option file. You can use the store button to write the command line
parameters to a Blaise command line option file.

6.10 Using the DEP

There are many ways to customise the look and behaviour of the DEP and it
would be impossible to describe how to use the DEP for all possible combinations

 Chapter 6: Data Entry Program

Developer's Guide 351

of layouts and behaviours. Here we describe some of the major features of using
the DEP and show samples of typical settings.

6.10.1 Invoking a behaviour mode: interviewing or data editing
The modes of behaviour are determined by settings in the modelib file, and how
those modes behave is determined in the configuration file. When you run the
DEP, the default mode of behaviour is automatically invoked.

To select a mode, select Options Data Entry Mode from the menu. You then
have a choice of Interviewing, Data Editing, or Self Defined. The exact
behaviours associated with each of these options is determined by the developer
in the configuration file.

The following is a sample of commut14.bla being run in Interviewing mode.
(Commut14.bla can be found in \Doc\Chapter4 of the Blaise system folder.)

Figure 6-56: DEP in interviewing mode

This window is split into two parts: the InfoPane is in the top half and contains
the question text for the interviewer. The FormPane is in the bottom half and
contains the fields. Here you are really using a behaviour and a layout together.
The behaviour is dynamic routing, checking, and display, with a split-screen
layout.

Chapter 6: Data Entry Program

352 Blaise 4.5

The following sample shows the same data model being run in typical data
editing mode.

Figure 6-57: DEP in data editing mode

In this mode, there is no InfoPane with information for an interviewer. In fact, the
question text is not displayed at all. The symbols next to the first two fields are
error symbols, which are described later in this chapter.

If Self Defined mode has been allowed by the developer, the Data Entry Modes
dialog box appears with a list of customised specification labels.

 Chapter 6: Data Entry Program

Developer's Guide 353

Figure 6-58: Data Entry Modes dialog box

The available choices are again defined by the developer. Select the Data Entry
Behaviour and the Form and Field Layout that you want and click the OK button.

The data entry behaviour is independent of the form and field layout. For
example, you can choose a data editing behaviour and still maintain an
interviewing or self-defined layout. It is also possible to have a data editor see
question text but still have navigational capability that the interviewer doesn’t
have.

! Allowing self-defined behaviour should be done with care. Allowing
interviewers to select a checking behaviour could affect the quality of the
data collection, but data editors may have reasons to switch modes.

6.10.2 Entering responses
When entering data into a Blaise instrument, you typically type responses in the
appropriate boxes and, if necessary, press the Enter key to move to the next field.
At the end of the form, you might be prompted to save the form. This is true in
both Interviewing and Data Editing modes.

In production, users will most likely use shortcut keys to access functions and
menu commands. Menu commands are not often used in production, mostly to
save time. Because you can set your own shortcut keys, in this section we have
specified the menu command to access the functions.

Chapter 6: Data Entry Program

354 Blaise 4.5

For reference, a table of the default shortcut keys is in the following figure:

Figure 6-59: Default shortcut keys in the DEP

Shortcut Key Description

Alt-F2 New form

Ctrl-F1 Question help

Ctrl-F2 Delete form

Ctrl-F7 Browse forms

Ctrl-F9 Undo all edits

Ctrl-M Make remark

Ctrl-S Sub forms

Ctrl-T Ditto

End Last page in the form

F1 Help

F2 Switch between insert and
navigate mode on the input line

F4 Errors in field

F7 Next form

F9 Show question text

Home First page in the form

PageDown Next page in the form

PageUp Previous page in the form

Shift-F2 Save form

Shift-F7 Previous form

Shift-F9 Search tag

 Chapter 6: Data Entry Program

Developer's Guide 355

Don’t know and refusal
To record a Don’t Know or Refuse response, select these from the Answer menu,
or use the shortcut keys. When you do so, a symbol appears in the field.

Don’t Know is a question mark.

Refuse is an exclamation point.

Remarks
To record a remark, select Answer Remark from the menu. The Remark dialog
box displays.

Figure 6-60: Remark dialog box

Type a remark and then click the Save button. A small paperclip symbol appears
next to the field. To view the remark, select Answer Remark from the menu, or
double-click the symbol.

• Ditto. The Answer Ditto command copies the contents of a field from the
previous form into the same field in the current form.

• Repeat. The Answer Repeat command copies the contents of the response
of the nearest field (that was earlier on the route) that has the same local name
on the current page. Local name refers to the name of the field without the
surrounding block name. This option is useful in tables, where each row is
normally of the same block type. In this case, all cells in a column have the
same local name, and this command copies the value of the cell above.

• Show question text. The menu option Answer Show question text displays a
dialog box with the question text. This might be useful in data editing mode,
when you probably won’t have an InfoPane with the question text. This is
also used for help text.

• Show all remarks, open answers, don’t knows, refusals. To view all remarks,
open answers, don’t know responses, and refusals in the current form, select

Chapter 6: Data Entry Program

356 Blaise 4.5

the appropriate option from the Navigate menu and a dialog box appears. The
sample below is the Remarks dialog box.

Figure 6-61: Showing remarks in the DEP

The fields that contain remarks are on the left, and the actual remark text is on the
right. Select a field using the up and down arrows or by clicking it in the left
column. To go to the field, select it and either press Enter or click the Goto
button.

Sub forms (accessing parallel blocks)
Parallel blocks in a data model allow you to break out of the order specified by
the rules and go directly to a different block. If the data model has parallel blocks,
access those blocks by selecting Navigate Sub Forms from the menu. The
Parallel Blocks dialog box appears.

Figure 6-62: Parallel Blocks dialog box

Select the block you want to go to and click the OK button. You can also quit the
current form from this box.

 Chapter 6: Data Entry Program

Developer's Guide 357

If the parallel blocks appear on a tabsheet, access the block by selecting the
appropriate tabsheet. You may also operate the tabs used for the parallels with the
keyboard. The normal key combination under Windows® to focus the
next/previous tab is (Shift)-Ctrl-Tab. Because Ctrl-Tab is also reserved to switch
between the form pane and the info pane, some changes have been made. In the
case when no tabs are present you can still use Ctrl-Tab to switch between the
form pane and the info pane. You can now also use the F6 key for this. In the case
when tabs are present, Ctrl-Tab (and Shift-Ctrl-Tab) can be used to focus the
next/previous tab and F6 needs to be used to switch between the form pane and
the info pane.

You can also start a parallel block from a menu item. See “Menu properties for
starting a parallel block” in section 6.8.2.

Start asker
Use the menu command Navigate Start asker for fields that require a special
action, such as a lookup. You can configure the DEP to require the user to use a
short-cut key or menu command to perform the action, instead of having it occur
automatically. If the DEP is configured in this way (it is a toggle in the DEP
configuration file), you would use this command to perform the action.

6.10.3 Navigating between forms
There are several ways to access and move among forms in Blaise.

• New form. To create a new form, select Forms New from the menu. If you
have not yet completed the current form, you will get a message prompting
you to save the form before selecting a new one.

• Get form by primary key. If a primary key has been identified in the data
model, access a specific form by its primary key value by selecting Forms
Get from the menu. You must know the value of the key to access the form.

• Browse forms. To browse forms, select Forms Browse from the menu. All
of the forms in the data file appear in the DEP window in the Database
Browser.

Chapter 6: Data Entry Program

358 Blaise 4.5

Figure 6-63: Browse forms window

If keys are defined, you can browse on any key type.

Go to a form by selecting the form and pressing the Enter key or double clicking
on the form. The form will then appear in the DEP window.

Close, save, delete
The Forms Close, Save, and Delete menu commands apply to the form
currently displayed in the DEP. If you select Close, you are prompted to save the
form. The Delete option is not usually allowed during production.

Form type
If you want to see only forms with a specific cleanliness status, then select Forms

 Form type from the menu. The Form Read Filter dialog box appears.

Figure 6-64: Form Read Filter dialog box

 Chapter 6: Data Entry Program

Developer's Guide 359

Select the type of forms you want to see and then click the OK button. See Figure
6-50. This might be used to review sets of forms. However, the Form Read Filter
is only used when Next form or Previous form (see below) is used. It is not used
when browsing forms.

Next and previous
To display the next or previous form, select Forms Next form or Previous
Form. To see the next, previous, first, or last page of the current form, select
Navigate Next Page, Previous Page, First Page, or Last Page. You can also
use the keyboard keys PageUp (previous page), PageDown (next page), Home
(first page), and End (last page). If the Navigation toolbar is visible, you can also
use the icons on the bar to move between pages of the instrument.

Data file
You can open a data file in the DEP that was created using the same data model
you are currently running. Select Forms Data file from the menu and select a
Blaise data file. The DEP window reappears. Select to browse the forms, and the
Database Browser opens with the data file.

Search tags
If a tag has been assigned to a field, you can search for the tag by selecting
Navigate Search tag from the menu. The Search Tag dialog box appears.

Figure 6-65: Search Tag dialog box

Type the value of the tag that you are searching for, select to search from the first
field in the form or from the current field, then click the OK button.

Chapter 6: Data Entry Program

360 Blaise 4.5

6.10.4 Errors
There are a few ways in which Blaise displays errors, and this can vary depending
on which mode you are operating in.

Errors in interviewing mode
When you encounter an error in typical interviewing mode with dynamic error
reporting, several things can happen. If you encounter a soft error, the Active
Signal dialog box appears with the error message and the fields that caused the
error.

Figure 6-66: Active signal dialog box

You can either go to the error and correct it, or suppress it.

! If you suppress a soft error, you have accepted the data, the form is then
considered clean, and it is not labelled as suspect.

If you encounter a hard error, a Hard Error dialog box appears with the error
message. This box looks exactly like the Active Signal box above, but you do not
have the option to suppress the error; you must immediately correct it.

Errors in data editing mode
In typical data editing mode with static error reporting, you do not have to correct
or attend to errors as they occur. When an error occurs, an icon or a number
appears next to the field that has the error, which is determined in the DEP
configuration file. Figure 6-62 shows the error icons.

 Chapter 6: Data Entry Program

Developer's Guide 361

Figure 6-67: Error icons in data editing mode

The following table gives the meaning of the icons.

Figure 6-68: Error icon definitions
Icon Description

Route error

Hard error

Soft error

If, however, the option Show error counters is selected in the mode library file or
the DEP configuration file that was used for the data model, error counters will
appear instead of icons. Up to three counters can appear next to a cell: one
counter for route errors, one for hard errors, and one for soft errors. The number
of each type of error in each field appears next to it.

Figure 6-69: Error counters in data editing mode

Chapter 6: Data Entry Program

362 Blaise 4.5

Show errors
To see all errors in the current field, select Navigate Errors in Field. To see all
errors in the current form, select Navigate Show All Errors. When you choose
either of these two options, the Errors dialog box appears.

Figure 6-70: Errors dialog box

The errors are listed on the left and error information is on the right. To go to an
error, click on the field in the Questions involved section in the lower right corner,
and then click the Goto button.

To see only specific types of errors, select Navigate Select Error Types. A
dialog box appears and you can choose to see route errors, hard errors, active
signals, and suppressed signals. When you return to the DEP, the error symbols
still display, but when you want to look at errors, only the selected types display.

6.10.5 Languages
If you specify language options in your data model, you can easily switch
between language modes when running the DEP.

To see all available language options, select Options Form Language from the
menu. The Form Languages dialog box appears. You could also set up function
keys to toggle between languages.

 Chapter 6: Data Entry Program

Developer's Guide 363

Figure 6-71: Form Languages dialog box

All spoken languages available in the current data model are listed. Select a
language and click the OK button. The DEP will then use the selected language
for all questions. You can also toggle between languages by selecting Options
Next Form Language or Previous Form Language.

Other languages maybe available but are not displayed due to the Datamodel
properties option to restrict the available languages. See Chapter 3, Section 3.8,
Datamodel properties.

6.10.6 Multimedia
The Blaise DEP commands for multimedia are accessed from the Answer menu
and the Options menu. Select Answer Play, Pause, or Stop to play, pause, or
stop the contents of the media language for that field. This might be a sound file,
a video, or a series of images. If you have configured the DEP to automatically
play multimedia files, the file will display or begin to play automatically when
you reach the appropriate field.

To turn sound on and off, select Options Mute. To hide or show a video on the
screen, select Options Hide Video. You can also use the DEP Menu Manager
to program function keys to perform these options. For more information on using
multimedia in data models, see Chapter 5.

6.10.7 Watch window
The Watch Window is a handy debugging tool that can be used to inspect values
of fields and auxfields, to inspect which block have been checked and to inspect
which external files have been accessed. The watch window is activated under
Run Parameters Dep in the Control Centre or via the command line option
/!.

Chapter 6: Data Entry Program

364 Blaise 4.5

Use the watch window pop-up menu to access to the following settings:

• Stay on top. When set the watch window will stay on top of the DEP and will
always be visible.

• Select fields. Use this option to access the field selector. In the fields selector
select the fields and auxfields to watch in the watch window.

• Clear selected fields. When choosing this option the current selection of (aux)
fields will be cleared.

• Show question text. When set the current question text will be displayed for
the selected (aux)fields.

• Show block checks. When set the system will display which blocks have been
checked during the last execution of the rules. The time when the block check
started will be displayed.

• Show external file access. When set the system will display the external files
that have been accessed for search or read during the last execution of the
rules. The key value used for the access will be displayed.

• Load watch settings. Use this option to load previously stored watch settings.

• Store watch settings. Use this option to store the current settings of the watch
window. The current settings of the watch window are saved by default in the
watch window settings file when the watch window is closed. The name of
this file is the name of the data model file and it has extension .bww. When
using the Watch Window command line option /!, behind the ! you can
optionally specify the name of a watch window settings file.

• Copy. Use this option to copy the current contents of the watch window to the
clipboard. The copy is cumulative: The current content is added (in front) to
what previously has been copied to the clipboard.

6.11 Running the DEP Outside the Control Centre

During development you can run the DEP from the Control Centre. In production,
you will almost always run the DEP from outside the Control Centre. There are
several reasons for this. Users do not need to know anything about the Control
Centre, since it would confuse them and give them options not meant for
interviewers. And in most circumstances, an instrument will be run from a laptop
or using the CATI Call Management System.

 Chapter 6: Data Entry Program

Developer's Guide 365

There are three main ways you can run the DEP from outside the Control Centre:

• You can create a Windows® shortcut to run the DEP and the appropriate
instrument.

• You can use Maniplus to run the DEP. See the Maniplus guide for
information.

• You can also create a batch file to run the DEP.

Chapter 6: Data Entry Program

366 Blaise 4.5

Developer's Guide 367

7 Basic Manipula

Manipula is a data processing system that can select, convert, rearrange, and sort
data. It can combine data, derive new data, sort records, define filters, and
perform complex computations.

Almost every study you conduct with Blaise® will require some use of Manipula.
This is because there is usually a need to move and manipulate files of data.

Manipula is a fast and powerful tool with specially designed features to support
efficient file processing, particularly of Blaise® files, but other types as well.
Manipula can read data in four types of format and can write data in five types of
format:

• Standard ASCII text files (positional or delimited formats)

• Special Blaise ASCIIRelational text files (positional or delimited formats)

• Special Blaise fixed text files (random access files with no end-of-record
markers)

• Special Blaise print text files (formatted pages with headers and footers)

• Blaise data files created as part of interviewing or data editing (can only be
read or written by Blaise)

Beginning with version 4.5, Blaise includes advanced capabilities that allow
Manipula to read and write directly to many PC databases, both client-server
databases such as Oracle® and Microsoft® SQL Server™, and desktop databases
such as Microsoft Access®. The capability is part of the Blaise Component Pack
(BCP). The BCP is a separately licensed enhancement to the standard Blaise
system, and is documented in a separate manual. Our description of Manipula in
this manual will address only capabilities in the standard Blaise system.

In Manipula, there can be multiple input and output files, and each file might be
of a different type of format. Each individual data file needs to have a description
of the structure of records in the file so that the data can be read and written. This
structure is defined in Manipula by using a data model description.

The following figure shows the types of data that can be read and written by
Manipula. For each connection line in the figure, there must be a data model

Chapter 7: Basic Manipula

368 Blaise 4.5

description, represented by a circle in the figure. More complete explanations of
these formats are in Section 7.5.

Figure 7-1: Flow of data for Manipula

Text F iles
(ASCII)

Text F iles
(ASCIIRELA

-TIONAL)

Random Access
Text F ile
(FIXED)

M anipula

Text F iles
(ASCII)

Text F iles
(ASCIIRELA-

TIONAL)

Random Access
Text F ile
(FIXED)

Print F iles
(PRIN T)

B laise database
(~.bd)

B laise database
(~.bd)

Data model description

This chapter covers basic Manipula programming where there is one input file,
one or two output files, and the file manipulation features of Manipula are
automatically invoked. More advanced uses of Manipula are covered in Chapter
8. An interactive enhancement to Manipula, called Maniplus, is covered in a
separate manual.

7.1 Things You Can Do With Manipula

There are many things you can do with Manipula for both basic and sophisticated
needs.

• If you have unique identification numbers and associated administrative data,
you can initialise a Blaise data set before the survey starts. You can
manipulate and reformat the data before initialisation.

• You can read survey data into or out of Blaise, or add data stored on laptops
as part of a Computer Assisted Personal Interviewing (CAPI) study to the
central database. You might want to do this for a section of the questionnaire
or for a subset of forms.

 Chapter 7: Basic Manipula

Developer's Guide 369

• You can generate reports on survey progress.

• You can run an edit check on all forms or a subset of forms in a data file,
invoking the RULES sections of the data model. The data may have come from
another source, or you may need to apply additional edits or computations
after data collection and before a final edit review.

• If you have already collected some data and find that you need to modify the
data model, you can convert the existing data into the new data format. This
can be done during development or production.

• You can export Blaise data to another software package such as SAS or
Oracle, or write text files (such as batch files) based on the contents of a
Blaise data model.

• You can derive new fields from the fields in your survey. Some examples are
making a new income field by splitting the measured income into a number
of classes, or making a new income field by summing all income
components.

• You can sort an ASCII file on certain fields or calculate simple statistics on
certain fields depending on the values of the sort fields.

• You can construct data records from information contained in several
different input files into one or more output files. The record construction is
based on some common link field or group of common link fields.

7.2 Starting Manipula

A Manipula setup is a text file that normally has the extension .man. If the
extension differs, then Blaise does not automatically treat the file as a Manipula
setup.

7.2.1 Creating a Manipula setup
There are two ways to create a Manipula setup from the Control Centre:

• Use the Manipula Wizard option from the Tools menu to create the setup
based on the results of some simple questions.

• Create a setup in the Blaise data editor.

Using the Wizard is a simple way to get started. Once you are proficient in
Manipula programming, you can create a setup in the text editor.

Chapter 7: Basic Manipula

370 Blaise 4.5

The following section describes how to create a setup using the Wizard and
provides an example. For information on creating a setup in the text editor, read
the following sections in this chapter.

Creating a Manipula setup using the Manipula Wizard
As an example, suppose you have carried out a survey in which you asked
questions relating to personal characteristics. This data model is the file
namejob1.bla found in \Doc\Chapter7. ASCII data for the data model are
in namejob1.asc. The task is to use the ASCII data to initialise a Blaise
database file (namejob1.bdb).

The first step is to prepare namejob1.bla to produce the metadata file
(namejob1.bmi).

We can now create a Manipula setup using the Manipula Wizard. Select Tools
Manipula Wizard from the menu, and the Manipula Wizard dialog box appears.
In our example, we will select the ASCII to Blaise option.

Figure 7-2: Manipula Wizard

When you click the Next button, the following box appears:

 Chapter 7: Basic Manipula

Developer's Guide 371

Figure 7-3: Naming the input file in the Manipula Wizard

In our example, data are read from a text file namejob1.asc whose description
is given by the data model namejob1 (saved in the file namejob1.bmi). The
next window (not shown) asks if the data in the file are delimited and asks you to
provide any separator or delimiter marks.

After the questions about whether the file is delimited, the following box asks for
information about the Blaise file to which the data are written:

Figure 7-4: Naming the output file in the Manipula Wizard

Chapter 7: Basic Manipula

372 Blaise 4.5

In our example, data are written to a Blaise database file namejob1.bdb whose
description is given by the data model namejob1.bla, as saved in the file
namejob1.bmi.

In the final window (not shown), you specify the name you are going to give the
Manipula setup file. We will use the name frmascii.man.

The frmascii.man example
The frmascii.man setup created by the Wizard is:

SETTINGS
 DESCRIPTION = 'ASCII to BLAISE'

USES
 InputMeta 'NameJob1'

INPUTFILE INPUTFILE1: InputMeta ('NameJob1.asc', ASCII)

OUTPUTFILE OUTPUTFILE1: InputMeta ('NameJob1', BLAISE)

MANIPULATE
 OUTPUTFILE1.WRITE

This setup will automatically copy every form from the input to the output data
set without conditions, overwriting everything that was already there. The data
definition of the output ASCII file can be found in the file
\Doc\Chapter7\namejob1.dic (produced by the Cameleon translator
dic.cif). See Chapter 9 for information on Cameleon.

The frmascii.man setup could have been produced by the text editor in the
Control Centre, and this is where more complex setups have to be created.

7.2.2 Preparing a Manipula setup
Once you have created the setup you need to check the program syntax. This is
known as preparing the setup. Do this by using one of the following:

• Selecting Project Prepare from the menu.

• Pressing F9.

• Clicking the Prepare speed button on the Speedbar.

If the syntax is correct, a special executable file that has extension .msu is
created.

 Chapter 7: Basic Manipula

Developer's Guide 373

7.2.3 Running a Manipula setup
Once you have prepared the setup, you execute or run the setup by opening the
Manipula setup itself (the file with the .man extension). Then press Ctrl-F9, or
click the Run speed button, or select Run Run from the menu.

When you use Run, Blaise checks to see which file is in the current window: a
Blaise data model, a Manipula setup, or a Cameleon translator. Blaise then checks
to see if any Run parameters have been set for that type of file. If parameters have
been set, then these replace any parameters specified in the file. Therefore, before
you run the file, make sure the parameters have been set correctly or are left
blank. Run parameters are discussed later in this section.

If there is a primary file set for the project, the primary file is run, not the file in
the active window.

If the .msu file does not exist, it is automatically prepared. If the .msu file already
exists, then the existing .msu file will be executed.

If you have changed the setup (.man) since the .msu file was prepared, there will
be a warning message:

Figure 7-5: Sample warning message when running Manipula

7.2.4 Manipula Run parameters
You can set run parameters for Manipula. These will affect all Manipula setups
run from the Control Centre.

Select Run Parameters from the menu and the Run Parameters dialog box
appears.

Chapter 7: Basic Manipula

374 Blaise 4.5

Figure 7-6: Run Parameters dialog box for Manipula

In all the entry boxes, only enter information if you want to change the defaults
for the setup you will run. These parameters will remain in operation for all
subsequent Manipula setups until changed.

• Input file name. Specify the name of the input file in the setup by typing the
name, or by selecting from previous files by clicking on the down arrow.
Multiple file names can be separated with a comma.

• Output file name. Specify the name of the output file in the setup by typing
the name, or by selecting from previous data files by clicking on the down
arrow. Multiple file names can be separated with a comma.

• Message file name. Specify the name of the message file (See Section 7.8.4
for more information on message files and day files).

• Day file name. Specify the name of the day file, which is an optional log file
created when the setup is run.

• Read-from folder. Specify the name of the folder from which you want to
take the input.

• ConfigurationFile. Name of the configuration file (extension .MIW).

 Chapter 7: Basic Manipula

Developer's Guide 375

• External path. The path to search for external data files used during
checkrules. The path only applies to external files with no absolute path
specified.

• Write-to folder. Specify the name of the folder to which you want to direct
the output.

• Parameter. Specify up to 32 parameters required by the setup. Parameters are
accessed in a Manipula setup by the use of PARAMETER(1), PARAMETER(2), …
in the MANIPULATE section of the setup.

• Wait when ready. Check to have Manipula prompt you when it is finished so
that you can inspect the results of record counters on screen.

• Quiet run. Check to run Manipula in quiet mode. This runs Manipula without
showing the Manipula dialog boxes on the screen.

• Batch mode. Check to instruct Manipula to run in batch mode. In this case, all
user interaction will be suppressed (for instance the PAUSE instruction and
WAIT parameter of a DISPLAY command will be ignored).

When finished, click the OK button.

7.3 Inspecting Input and Output Data

During development and testing, you can inspect output data in the Control
Centre.

For ASCII input or output files, you can use a normal window in the text editor.
For example, this is the original ASCII file (compare to the following Blaise
data):

Chapter 7: Basic Manipula

376 Blaise 4.5

Figure 7-7: Viewing ASCII data for namejob1,
 used as input data by frmascii.man

For Blaise output files, use the Database Browser. For example, for
namejob1.bdb, you can see all or a subset of the data fields.

Figure 7-8: Blaise data for namejob1, created by frmascii.man

 Chapter 7: Basic Manipula

Developer's Guide 377

7.4 Basic Operation of Manipula

Tasks performed by Manipula
When Manipula is executed, several tasks are performed by the system,
automatically if appropriate:

• Data files are opened and closed as necessary.

• A data tree, a representation of the data corresponding to the structure of a
data model, is constructed in memory. This is done once for the input and
output data models separately. If there are two or more data trees, a
connecting scheme looks for identically named fields between data models.

• Data are read into memory, one record at a time, from the input data file.
Before each record is read in, the contents of the last input and output record
are deleted from memory. In memory, data are copied from the first data tree
(belonging to the input file) to the second (belonging to the output file).

• If there is a MANIPULATE section (see Section 7.6.4), then data manipulations
are carried out on the output data record while still in memory. After the data
copy and manipulation, output data are written to the output file on disk and
the process starts anew.

Default settings
There are several default settings that are applied to the Manipula setup unless
turned off. These are designed to simplify the use of Manipula. For example, you
do not have to bother about read and write statements. These automatic settings
include the following:

AUTOREAD Reads input file record.

AUTOCOPY Copies data from the input file to the output file in
 memory for identically named fields.

An implicit feature of Manipula (not a setting) is:

AUTOWRITE

If a Manipula setup does not have a MANIPULATE section, data are automatically
written to the output file. As soon as there is one instruction in the MANIPULATE
section, then AUTOWRITE is turned off and you have to write the record yourself.

Chapter 7: Basic Manipula

378 Blaise 4.5

For more sophisticated uses of Manipula, some of the automatic settings are not
appropriate. Manipula settings which you can use to customise the behaviour of
Manipula setups are covered later in this chapter.

7.5 File Formats Supported by Manipula

Manipula supports six file formats for input and output data files. The first three
file types are covered in this chapter.

• Manipula can read and write Blaise data files, provided a description of these
files is available in the form of a Blaise metadata file in the USES section. This
means that there is a Blaise data model prepared. To indicate this data file
type, use the reserved word BLAISE.

• Manipula can read and write text files that can be produced by text editors,
Manipula, database systems, statistical analysis systems, or programming
languages. Text files can have separators/delimiters or use positional format,
but all records must have end-of-record markers. Blaise accepts Carriage-
Return (ASCII 13), Carriage-Return, Line-Feed (ASCII 13-10), and Line-
Feed (ASCII 10) as end-of-record markers. (Text files that come from UNIX
systems have ASCII 10 as end-of-record markers.) Records do not have to be
the same length. At present, export or import of data for Blaise uses text files.
Normally, if a text file is held on disk, only sequential read operations can be
carried out. Random access is possible, however, if the file is stored in
memory (as with Manipula temporary files). Using binary search techniques,
with files stored in memory, records can be located quickly. To indicate text
files, use the reserved word ASCII.

• Manipula can write a print file. A print file is a text file that you can use for
reports. You can have headers, footers, page and line feeds, and formatted
text that appear on every page or selected pages. If you want to use an output
file as a print file, you can specify the file type PRINT in the OUTPUTFILE
section. For details, see file type in the online reference manual.

The use of the next two file types is covered in Chapter 8.

• Manipula can read and write ASCIIRelational files. These files are used for
importing and exporting from a relational database to a Blaise data set, or
vice versa. ASCIIRelational causes a data set to be written for each block
definition unless the block is embedded within a higher level block.
Regardless of the direction of the flow, data are written to ASCII as an
intermediate step.

 Chapter 7: Basic Manipula

Developer's Guide 379

• Manipula can read and write a special kind of ASCII file called a fixed file (or
random access file). This is an ASCII file that does not have end-of-record
markers. All records must be the same length. By using binary search
techniques, records can be located quickly. Searching can be done either on
disk, if the file is sorted on the values of a key field, or in memory. Such files
are indicated with the reserved word FIXED.

The sixth file format, OLEDB, provides access to relational databases such as
Microsoft Access®, Microsoft® SQL Server™, and others. It does this using
Microsoft’s database technology-- ADO/OLEDB. This advanced capability is not
part of the standard version of Blaise but comes with the added-cost Blaise
Component Pack (BCP) product. OLEDB in Blaise is documented separately.

7.6 Outline of a Basic Manipula Setup

Manipula setups consist of a number of sections. The most important sections are:

• USES

• INPUTFILE

• OUTPUTFILE

• MANIPULATE

In addition, you can include the following sections:

• UPDATEFILE

• TEMPORARYFILE

• SORT

• PRINT

• AUXFIELDS

• SETTINGS

We will illustrate each section through examples and discuss each section briefly.
You will find more details in the Reference Manual.

7.6.1 USES section
The USES section declares the data models describing the data files used in the
setup (a data model description). The data descriptions give the data definition
and the structure of the data files. The section starts with the reserved word USES.
Data model descriptions come in two forms.

Chapter 7: Basic Manipula

380 Blaise 4.5

USES
 MetaName 'MetaFileName'

MetaName is an identifier that refers to the Blaise data model describing the data
files used in the Manipula setup. MetaFileName is the name of the Blaise
metadata file. You can refer to MetaName in the INPUTFILE, UPDATEFILE,
TEMPORARYFILE, or OUTPUTFILE sections, and you can include a path. For
example:

USES
 BlaiseMeta 'C:\BLFILES\NAMEJOB1'

This specification assumes that there is a Blaise metadata file with the name
namejob1.bmi. In other words, it assumes that you have prepared the data
model namejob1. The meta name BlaiseMeta is used later in the Manipula setup
to refer to the Blaise data model that describes the structure of a file. One or more
input and output files can refer to one meta name.

USES
 DATAMODEL MetaName
 DataModelSpecification
 ENDMODEL

You can define a data model directly in the Manipula setup. Usually you use this
for ASCII files for which Blaise data models do not exist and for which the
description is not needed elsewhere. You may not use this explicit model
definition for Blaise data files.

Again, MetaName is the identifier that refers to the data model in the Manipula
setup. DataModelSpecification is the description of the structure of the data file.
It can consist of FIELD sections, TYPE sections, and block definitions. The
following is simple example (asc2asc.man):

 Chapter 7: Basic Manipula

Developer's Guide 381

USES
 DATAMODEL FlatFile1
 FIELDS
 Completion : (Done, NotDone)
 Region : INTEGER[2]
 Stratum : INTEGER[4]
 SampleNum : 1000..9000
 Name : STRING[20]
 Birth : DATETYPE
 Town : STRING[20]
 Gender : (Male, Female)
 Job : (Yes, No)
 ENDMODEL

FlatFile1 is the identifier (meta name) that refers to the data model. The fields are
defined after the reserved word FIELDS. Note that the field definitions have the
same syntax as Blaise field definitions. Data models can be much more complex
than the one above. You can define blocks and arrays of blocks. You can have
two or more data models in the USES section (see split2.man).

7.6.2 INPUTFILE section
The INPUTFILE section describes the names, data model references, and file types
of input data files. The section starts with the reserved word INPUTFILE, and is
terminated by the start of a subsequent section:

INPUTFILE
 DataName: MetaName ('DataFileName', FileType)

• DataName is an identifier used to refer to this input file in later sections of

this setup.

• MetaName is the identifier referring to the data model as specified in the
USES section.

• DataFileName is the name of the file containing the data (specified within
quotes). The file name may include a path specifying the folder containing
the file, and a file extension is allowed (except for Blaise and ASCIIRelational
files).

• FileType denotes the type of the data file. You can write one of the reserved
words BLAISE, ASCII, FIXED, or ASCIIRELATIONAL. If you omit the file type,
the default type ASCII is assumed.

Suppose we want to read an ASCII file corresponding to the data model
description (FlatFile1) in the USES section above. The following is one possibility
for the INPUTFILE section (asc2asc.man):

Chapter 7: Basic Manipula

382 Blaise 4.5

INPUTFILE
 InFile : FlatFile1('NameJob1.asc', ASCII)

The meta name of the data model is FlatFile1. This identifier, already defined in
the USES section, is used in the INPUTFILE section to tell Manipula the structure of
the text file namejob1.asc. We could have left out the file type, since ASCII is
the default file type.

You can describe more than one input data file. In that case, the first input file is
called the main input file, and all other input files are called link files. You need a
separate INPUTFILE section for each input file. This means you need the key word
INPUTFILE for each input file. Use of multiple input files, including linking them,
is covered in Chapter 8.

7.6.3 OUTPUTFILE section
Specifying output files is very similar to specifying input files. You use the
reserved word OUTPUTFILE. For identically named fields (taking into account dot
notation) that are mentioned in both the input and output files, the values are
automatically copied from input to output. Note that if the output field is not type
compatible with the identically named input field, Manipula will report an error
during the parsing stage of the setup. Fields that only appear in the output file
initially remain empty. However, for every output field a new value can be
computed in the MANIPULATE section.

You can specify more than one output file. In that case, you have to include an
OUTPUTFILE section for each file. This means you must have the key word
OUTPUTFILE for each output file. This allows you to split files by writing some
records to one file and writing different records to another file. For example:

OUTPUTFILE
 CompleteData : BlaiseMeta('Complete.asc', ASCII)

OUTPUTFILE
 MissingData : BlaiseMeta('Missing.asc', ASCII)

An example illustrating one file split into two is split1.man.

7.6.4 MANIPULATE section
In the MANIPULATE section, you specify computations and derivations of fields.
Using conditional statements such as IF … ENDIF, you can subset data files, or

 Chapter 7: Basic Manipula

Developer's Guide 383

process selected fields. You can define procedures, then reuse them with different
fields. The section starts with the reserved word MANIPULATE.

For some Manipula setups, the MANIPULATE section is not required. Without it,
records will automatically be written to an output file. However, once the
MANIPULATE section contains any instruction, you must use the WRITE instruction
to write records to an output file.

Expressions
You can assign new values to output fields and auxfields by using expressions.
The results of these expressions are assigned to output fields. Auxfields are
discussed in Section 7.8.1. Expressions are formally discussed in Chapter 3. The
use of expressions is illustrated in a number of examples given below and in the
folder \Doc\Chapter7.

Functions
There are many functions that you can use in the Manipula setup. Functions are
explained and listed in the Reference Manual. The Manipula setup prog2.man
illustrates the use of a string function STR.

Control structures
There are a number of control statements that help you control the logic of the
manipulations. Manipula offers a few more control structures than Blaise. Besides
the IF-statement and the FOR-loop, Manipula offers the CASE-statement, the
WHILE-loop, and the REPEAT-loop. The IF-statement and FOR-loop have already
been discussed in Chapter 3. The following is an example of an IF condition in a
MANIPULATE section:

MANIPULATE
 IF (Working = 1) AND (Distance > 20) THEN
 Commuter := 1
 ELSE
 Commuter := 0
 ENDIF
 OutFile.WRITE

This is an efficient structure since the assignment to the field Commuter is only
executed once. Since there is a MANIPULATE section with at least one instruction
in it, the WRITE instruction is needed to write records to the output data set.

Chapter 7: Basic Manipula

384 Blaise 4.5

CASE OF statement versus IF-ELSIF-THEN statement
When it comes to complex, excluding conditions, you can use the CASE OF
structure in Manipula. The first example below uses an IF-ELSEIF-THEN structure
to determine age classes in the field AgeClass.

IF Age < 20 THEN AgeClass:= 1
 ELSEIF Age < 40 THEN AgeClass:=2
 ELSEIF Age < 60 THEN AgeClass:=3
 ELSE AgeClass:=4
ENDIF

This second example accomplishes the same thing using the CASE OF structure.

CASE Age OF
 1..19: AgeClass:= 1
 21..39: AgeClass:= 2
 41..59: AgeClass:= 3
 ELSE AgeClass:=4
ENDCASE

While the results of the two structures are identical, the CASE OF structure is
easier to understand.

Two MANIPULATE sections
You can have two MANIPULATE sections in one Manipula setup as long as they
are separated by a SORT section.

7.6.5 Other file sections
Other file sections include UPDATEFILE and TEMPORARYFILE. These sections are
covered in Chapter 8.

7.7 Basic Examples

The following examples use only basic features of Manipula: the USES,
INPUTFILE, OUTPUTFILE, and MANIPULATE sections. The relevant data model,
Manipula setups, and data files shown below are found in \Doc\Chapter7.

 Chapter 7: Basic Manipula

Developer's Guide 385

7.7.1 Extending a Blaise data file
In development or in production, you might find it necessary to modify your
Blaise data model. In certain situations, this will change the data definition of the
data set (see Chapter 3). If you have already collected data, you will not want to
re-enter them, but you would like to have all of the data held in the same Blaise
data file.

In this situation, you can read data directly from the old version of the data model
to the new version. The example that follows is used in development situations,
but the principle is the same for data models that are already in production. Here
is the Manipula setup oldtonew.man:

USES
 OldDataModel 'OLD\NameJob1'
 NewDataModel 'NameJob1'

INPUTFILE
 InFile : OldDataModel ('OLD\NameJob1', BLAISE)

OUTPUTFILE
 OutFile : NewDataModel ('NameJob1', BLAISE)

In this example, there is a folder named OLD under the current work folder. The
subfolder contains the namejob1.b* files for the namejob1 data model. To
create a new version of the data model, copy all files of the form namejob1.b*
to the OLD folder, and then delete the namejob1.b* files from the current work
folder.

After modifying the data model by changing the .bla file in the work folder and
then preparing it, run the Manipula setup above. This will populate the new
database with the data previously entered. Manipula will transfer all data with
matching names, taking into account block names, if appropriate, that are type
compatible.

7.7.2 Initialising a Blaise data file
You can initialise a Blaise data file through an ASCII to Blaise import. The
ASCII file will hold only administrative data such as unique identification
numbers and names. This is useful for Computer Assisted Telephone
Interviewing (CATI) surveys, when you need to start with telephone numbers to
dial.

For example, the ASCII data set may might look like the following (init.asc):

Chapter 7: Basic Manipula

386 Blaise 4.5

 10 1001000Mark
 10 1001001Lesley
 10 1001012Esme
 10 1001013Vita
 20 1001002Lon
 20 1001003Ingeborgh
 20 1001004Denise

The Manipula setup that will read in this data file is called init.man and is:

USES
 BlaiseMeta 'NAMEJOB1'

INPUTFILE
 InFile : BlaiseMeta('INIT.ASC', ASCII)

OUTPUTFILE
 OutFile : BlaiseMeta('NameJob1', BLAISE)

If all of the records of the starting ASCII file are to be read in, then the Manipula
setup above will suffice. If you want to read in only those records with known
names, you need the following MANIPULATE section:

MANIPULATE
 IF NAME <> '' THEN
 OutFile.WRITE
 ENDIF

7.7.3 Exporting a Blaise data file to ASCII
To export all data from a Blaise data file to ASCII, use a setup similar to the
following (toascii.man):

USES
 BlaiseMeta 'NAMEJOB1'

INPUTFILE
 BlaiseData: BlaiseMeta('NameJob1', BLAISE)

OUTPUTFILE
 AsciiData: BlaiseMeta('NameJob1.asc', ASCII)

This Manipula setup was written by the Cameleon translator toascii.cif, and
will write all data records and all fields to the ASCII data file. To get a
description of the data file, run the Cameleon dictionary setup dic.cif. This
setup is sufficient for simple data models. If you have a hierarchical data model,

 Chapter 7: Basic Manipula

Developer's Guide 387

then you will want more sophisticated ways of writing data, which are discussed
in Chapter 8.

To write only the records which are complete, use a Manipula setup with a
MANIPULATE section. For example (toascii2.man):

USES
 BlaiseMeta 'NAMEJOB1'

INPUTFILE
 BlaiseData : BlaiseMeta('NameJob1', BLAISE)

OUTPUTFILE
 AsciiData : BlaiseMeta('NameJob2.asc', ASCII)

MANIPULATE
 IF BlaiseData.Complete = Done THEN
 AsciiData.WRITE
 ENDIF

If you want to split the output into two files, one file for complete forms and the
other file for incomplete forms, you can use two OUTPUTFILE sections and
appropriate instructions in the MANIPULATE section. For example (split1.man):

USES
 BlaiseMeta 'NAMEJOB1'

INPUTFILE
 BlaiseData : BlaiseMeta('NameJob1', BLAISE)

OUTPUTFILE
 CompleteData : BlaiseMeta('Complete.asc', ASCII)

OUTPUTFILE
 MissingData : BlaiseMeta('Missing.asc', ASCII)

MANIPULATE
 IF BlaiseData.Complete = Done THEN
 CompleteData.WRITE
 ELSE
 MissingData.WRITE
 ENDIF

7.8 Extending a Manipula Setup

Four additional sections that are commonly used in Manipula are AUXFIELDS,
SORT, PRINT, and SETTINGS.

Chapter 7: Basic Manipula

388 Blaise 4.5

7.8.1 AUXFIELDS section
Auxfields in Manipula have much the same use as they do in a Blaise data model.
They hold intermediate values in calculations that can be used later in the setup.
The AUXFIELDS section is defined after the last file section, and appears before
the MANIPULATE section. The syntax for auxfields is the same as that for fields.

Auxfields are initialised every time a record is read from the first input file. They
do not carry over values from one record to another.

Sometimes an auxfield is used to hold an intermediate value is in prog1.man,
part of which is shown in the following example:

AUXFIELDS
 CompletionString : STRING[15]

MANIPULATE
 IF BlaiseData.Complete = Done THEN
 CompletionString := 'Complete'
 ELSE
 CompletionString := 'Not Complete'
 ENDIF

GLOBAL auxfields
Sometimes it is necessary to hold the value of a field from one input record to the
next. For example, an ASCII input file may be sorted on the completion status
field. In this case, all of the complete forms are together and all of the incomplete
ones are together. You might want to detect when you change from the part of the
data set with complete forms to the part where there are incomplete forms. You
can do this with a global auxfield. They are not initialised for every record as
normal auxfields are. Global auxfields are declared in a separate AUXFIELDS
section. The syntax is:

AUXFIELDS (GLOBAL)

The following is an example from prog2.man:

 Chapter 7: Basic Manipula

Developer's Guide 389

AUXFIELDS (GLOBAL)
 HoldCompletionString : STRING[15]

{Many lines and sections later.}

MANIPULATE
 IF HoldCompletionString = '' THEN
 ProgressReport.PRINTSTRING('Completed Reports')
 HoldCompletionString := CompletionString
 ELSEIF CompletionString <> HoldCompletionString THEN
 ProgressReport.PAGE
 ProgressReport.PRINTSTRING('Missing Reports')
 HoldCompletionString := CompletionString
 ENDIF

In the above example, the value of HoldCompletionString will only change when
an assignment is carried out. It will not be reinitialised when a new record is read.

A more complex use of global auxfields is found in Chapter 8, where you need to
convert an ASCII file of several physical records per logical record to an ASCII
or Blaise file of one physical record per logical record.

FOR-DO loops
Manipula does not allow locals as Blaise does. When you use a FOR-DO loop in
Manipula, use an auxfield as the counter. See Chapter 8 for an illustration of a
FOR-DO loop.

7.8.2 SORT section
When you have a text output file, it is often necessary to sort it on certain fields
before continuing processing. For example, you might have a file with complete
and incomplete forms mixed together. When the data are read out to ASCII, you
can sort the output records on the field for completion status. Then you can
process the result further. A SORT section is found in the setup prog2.man.

SORT
 CompletionString (ASCENDING)
 OneLine (ASCENDING)

Here the output ASCII file is sorted in ascending order on the two fields
CompletionString and OneLine.

Reserved words that can be used with a sort include ASCENDING, DESCENDING,
SUM, MEAN, MAXIMUM, MINIMUM, STDDEV, VARIANCE, and MEDIAN. Enclose
these words in parentheses after the name of the field to which they apply.

Chapter 7: Basic Manipula

390 Blaise 4.5

The reserved words SUM, MEAN, MAXIMUM, MINIMUM, STDDEV, VARIANCE, and
MEDIAN indicate a special treatment for all records of which the sort fields have
the same value. They can be used for numeric fields.

SORT
 Age (ASCENDING)
 Gender (DESCENDING)
 Income (SUM)

For each different value of the sort fields, one record will be present after the sort.
For example, the field Income in each record will have the sum of the Income
field of all records with the same value of the sort fields.

A SORT section is often followed by another MANIPULATE or PRINT section. You
cannot sort Blaise files (but you do not need to sort Blaise files because you can
process them in order of primary or secondary keys).

7.8.3 PRINT section
A PRINT section is used in conjunction with a print file declared in the
OUTPUTFILE section. A print file is a text file with headers, footers, page or line
breaks, and formatted text to make a report more readable. The following
example is of a print file in an OUTPUTFILE section and a PRINT section found in
the Manipula setup prog2.man:

OUTPUTFILE
 ProgressReport : Progress('prog2.asc', PRINT)

{Many lines and sections later.}

PRINT(ProgressReport)
 SETTINGS
 PAGELENGTH = 25
 HEADER := 'Progress report for survey'
 HEADER := 'Date : ' + DATETOSTR(SYSDATE) + ' ' +
 'Time : ' + TIMETOSTR(SYSTIME)
 FOOTER := 'Page ' + PAGENUMBER

The reserved word PRINT is followed in parentheses by the data name (in this
case, ProgressReport) that has already been declared in the OUTPUTFILE section.
Several reserved words can be used in conjunction with PRINT: SETTINGS,
HEADER, FOOTER, and END. For more information on these key words, see the
Reference Manual.

 Chapter 7: Basic Manipula

Developer's Guide 391

Date and time stamps
The reserved words SETTINGS, HEADER, FOOTER, and END produce text strings.
Note the use of several functions in defining time and date stamps. The reserved
words in the example above produce output files with headings such as:

Progress report for survey
Date : 01-04-1996 Time : 12:02:16

and a footer such as:

Page 1

You can also make date and time stamps in other kinds of files.

7.8.4 SETTINGS section
You can modify the behaviour or the output of a Manipula setup through the
SETTINGS section. There are various ways to classify settings:

• They can be global or local.

• They can be file-related or not file-related.

Global settings
A SETTINGS section that is at the beginning of the Manipula setup is a global
SETTINGS section. Settings made here affect all subsequent sections in the
Manipula setup where applicable. An example of a global setting in prog2.man
is:

SETTINGS
 DATEFORMAT = MMDDYY

This setting would be useful in the United States because it sets the date format to
the convention used there. In any of the subsequent output files where there is a
date stamp, the month will proceed the day of the month. The global setting
above is the first section of the Manipula setup; this is what makes it global.

Figure 7-9 lists global settings that are not file-related. In this table, the name of
the setting is in the first column, the syntax is in bold in the second column, and
possible values for each setting are in the third column, with the default
underlined:

Chapter 7: Basic Manipula

392 Blaise 4.5

! Some global settings can be set or overridden using command line
parameters (see Section 7.9 on batch processing using Manipula). Refer to
the Reference Manual for complete details.

Figure 7-9: Global Manipula settings (not file related)
Setting Description Possible Values
AUTOREAD Whether records are read

automatically from the first (main)
input file.

AUTOREAD = VALUE

YES

NO

CALCERROR How to handle a run-time calculation
error.

CALCERROR = VALUE

CONTINUE

MESSAGE

HALT

DATEFORMAT Format of a date string.

DATEFORMAT = VALUE

DDMMYY

MMDDYY

YYMMDD

DATESEPARATOR Separator in a string representation of
a date.

DATESEPARATOR = 'S'

Default is - Other possible
values of S are ; : . , / \ # or
a blank space.

DAYFILE The name of a day file, an optional log
file, created when running a setup.

DAYFILE = 'FileName'

Default is no file. Setting can
also be given on the
command line.

DESCRIPTION A setup text which is displayed on the
screen and is written to the day file.

DESCRIPTION = STRING

No description by default.

ESCAPE Whether the current job can be
interrupted.

ESCAPE = VALUE

YES

NO

INPUTPATH The default folder for input files that do
not include a DOS path.

INPUTPATH = 'PathName'

Default is no input path. Can
also be given on the
command line.

MAXMESSAGE The maximum number of messages to
be written to the message file. If this
number is reached, Manipula will halt
execution.

MAXMESSAGE = N

N = 100. If you set N = 0,
there is no maximum.

 Chapter 7: Basic Manipula

Developer's Guide 393

Setting Description Possible Values
MESSAGEFILE The name of the message file.

MESSAGEFILE = 'FileName'

Manipula.msg

Can also be given on the
command line.

METASEARCHPATH The default folder for the meta
information files.

METASEARCHPATH = 'PathName'

Default is no search path.
Can also be set from the
command line.

OUTPUTPATH The default folder for output files that
do not include a DOS path.

OUTPUTPATH = 'PathName'

Default is current folder.
Can also be set on the
command line.

OVERFLOW How to treat a run-time string overflow
error.

OVERFLOW = VALUE

CONTINUE

MESSAGE

HALT

RANGEERROR How to treat a range error.

RANGEERROR = VALUE

CONTINUE

MESSAGE

HALT

SUBSCRIPTERROR How to handle a run-time subscript
error (for arrays).

SUBSCRIPTERROR = VALUE

CONTINUE

MESSAGE

HALT

TIMEFORMAT Specifies the format of a time in a
string.

TIMEFORMAT = VALUE

HHMMSS

HHMM

TIMESEPARATOR The separator in a string
representation of a time.

TIMESEPARATOR = 'S'

Default is: Other possible
values are ; . / \ - , or blank
space.

WARNINGS Whether the list of run-time errors
must be displayed on screen after
execution.

WARNINGS = VALUE

YES

NO

Some organisations have standard settings that they always include in their
Manipula setups.

Chapter 7: Basic Manipula

394 Blaise 4.5

For example:

SETTINGS
 DATEFORMAT = MMDDYY
 DATESEPARATOR = '/'
 DAYFILE = 'DAYFILE.LOG'
 DESCRIPTION = 'One Blaise data set into two ASCII.'
 MAXMESSAGE = 0
 MESSAGEFILE = 'MESSAGE.LOG'

These settings give a United States date format with ' / ' as a separator. The setup
will continue to run no matter how many messages are written to the message file,
since MAXMESSAGE = 0. A log file of Manipula steps will be kept in a file called
dayfile.log, and messages, if any, will be written to message.log.

Note that the setting can be overridden on the command line as noted before.
They can also be omitted entirely from the SETTINGS section above and still
implemented using the command line, or some can be set by using the Run
parameters. These settings are implemented in the setup split2.man.

File-related settings
File-related settings apply to INPUTFILE or OUTPUTFILE sections (also
UPDATEFILE and TEMPORARYFILE sections discussed in Chapter 8). Some can be
global or local, while others are more restricted. A local setting applies only to the
INPUTFILE or OUTPUTFILE section in which it is declared. For example:

OUTPUTFILE
 ProgressReport : Progress('prog2.asc', PRINT)
 SETTINGS
 TRAILINGSPACES=NO

The local setting TRAILINGSPACES will affect only this output file, not any other
output files that may be present.

Figure 7-10 on the pages that follow provides file-related settings. Check the
Reference Manual for default settings as well as other details.

• In the Global/Local column, G = Global and L = Local settings.

• In the File Type column, A = ASCII, R = ASCIIRelational, P = Print, F =
Fixed, B = Blaise, and blank = all file types.

• In the I/O column, I = Input files, O = Output files, U = Update, T =
Temporary, and All = All input/output types.

 Chapter 7: Basic Manipula

Developer's Guide 395

Figure 7-10: File-related Manipula settings (local and global)

Setting
Global/
Local

File
Type I/O Description

ACCESS G/L B IOU Whether the data file is for exclusive
or shared use in Manipula.

AUTOCOPY G/L ITU Copy input fields to output fields with
matching names automatically.

CHARACTERSET

{ OEM | ANSI }

G/L B I/O With this setting you can specify the
character set used.

When used for an output file all data
written to that file will be according to
the ANSI character set. When used
for an input file the system will
assume all data will be according to
the ANSI character set.

CHECKRULES G/L All Check the rules of the data model.

CHECKRULES
UNCHANGED

G/L All Whether the checkrules must be
forced on an unchanged form.

CLEARSUPPRESSES
ONCHECK

G/L All Whether the checkrules must reset
all suppressed signals.

CONNECT G/L All Prepare the data tree for copying of
data to fields with equal names in
other data trees.

DECIMALSYMBOL G/L I/O With this setting you can specify the
decimal symbol used in real type
fields.

The default setting is a period ('.').

DELIMITER L AR IO String field delimiter.

DUPLICATES L AP O Whether records with the same sort
key may be present after the sort.

DYNAMICROUTING G/L All Whether the checkrules must be
carried out in dynamic routing mode.

EXCLUDEBLOCKS L R O Which block types have to be
excluded from the ASCIIRelational
export.

FILLZERO G/L APR O Whether numeric output fields must
have leading zeroes.

FORMAT L AR O Format of fields in case a separator
is present.

INCLUDEBLOCKS L R O Which block types have to be
included in the ASCIIRelational
export.

INITRECORD L OUT Initialise the output record.

Chapter 7: Basic Manipula

396 Blaise 4.5

Setting
Global/
Local

File
Type I/O Description

INMEMORY L I Whether to load the entire input file in
internal memory.

KEY L B ITU The key type by which the forms
must be processed.

MAKENEWFILE L OU Whether to append records to the
current output file or to start a new
one after deleting the old one.

ONLOCK G/L B OU Whether Manipula has to wait if a
form is locked.

OPEN G/L IOU Whether the file has to be opened
when the setup is started.

RANGECHECK G/L AFPR All For field assignments, whether to
check if the assigned value is within
the valid range.

REMOVE L B OUT Whether the original record must be
removed if the same record is saved
under a different key.

REMOVEEMPTY G/L OU Delete empty output files.

RENEW L OUT Whether a newly produced record
must overwrite an original record with
the same key.

REQUESTED G/L IU Whether a file must be present when
the execution of a setup starts.

SELECTSTATUS L B IU Select records based on the form
status of Clean, Dirty, Suspect, or
NotChecked.

SEPARATOR L AR IO Field separator.

SEQUENTIAL L F I Whether to use a sequential or binary
search method to link a file on disk.

SKIPEOF L A I Enable to continue reading records
when EOF characters (ASCII #26)
are encountered.

STARTKEY L B I Specify where to start processing the
file based on the value of the key.

TRAILINGSPACES G/L APR O Whether trailing spaces of an output
record must be written to the output
file.

Which file-related settings you use depend on the application at hand. The best
way to become familiar with these settings is to read the Reference Manual, to
experiment, and to inspect examples of Manipula programs.

 Chapter 7: Basic Manipula

Developer's Guide 397

7.9 Running Manipula as a Separate Program

You can also run Manipula as a separate program. The syntax is:

MANIPULA SetupName Option Option ... Option

SetupName is the name of the prepared Manipula setup. You always have to
specify this file. Manipula will always use the extension .msu. Therefore, you
must first prepare your Manipula setup in the Control Centre before you can run it
as a separate program outside the Control Centre.

Command line parameters for Manipula are in Appendix A. An example of a
Manipula command line parameter is:

Manipula FRMASCII /IInit.asc

This command line of Manipula will use frmascii.msu but will override the
input file specified in the original frmascii.man. Instead of reading in data
from namejob1.asc, it will read in data from init.asc. Note that init.asc
must be described by the same data model as namejob1.asc.

Another approach is to specify the Manipula options or parameters in a Blaise
Command Line File (.BCF) and run Manipula with the BCF. For example:

Manipula @FRMASCII.BCF

FRMASCII.BCF is a text file like this:

[ManipulaCmd]
Setup=FRMASCII.MSU
InputFile=Init.Asc

For Manipula jobs using more than a few of the 16 available options, Blaise
command line files can be quite helpful. They are easier to debug and can be
generated for other processes more efficiently. The Blaise Command Line File
capability is documented in Appendix A. Also, a list of all BCF options for both
DEP.EXE and MANIPULA.EXE is given in Blaise.BCF in the Blaise installation
root folder.

Chapter 7: Basic Manipula

398 Blaise 4.5

7.10 Example Manipula Setups

The following table lists the example setups used in this chapter. They can be
found in the folder \Doc\Chapter7.

Figure 7-11: Example Manipula setups (listed alphabetically)

Manipula Setup Description

asc2asc.man From ASCII to ASCII with different data models.

frmascii.man Survey data from ASCII to Blaise.

init.man Administrative data from ASCII to Blaise.

oldtonew.man From Blaise to Blaise for extending a Blaise data model.

prog1.man Simple progress report.

prog2.man More sophisticated progress report.

split1.man From Blaise to two ASCII data sets.

split2.man Shows global settings, complicated IF structures, three data
models in the USES section, INCLUDE files, and block-level
computations.

toascii.man Survey data from Blaise to ASCII.

toascii2.man From Blaise to ASCII for selected records.

Developer's Guide 399

8 Advanced Manipula

This chapter covers additional aspects of Manipula programming that were not
covered in Chapter 7. This chapter explains how to run Manipula when there are
multiple input files, multiple output files, and the file manipulation is under the
user’s control (that is, file manipulation is not automatically provided by
Manipula).

All the sample files used in this chapter can be found in \Doc\Chapter8 in the
Blaise® system folder.

8.1 More Sections in Manipula

This section discusses additional sections you can include in a Manipula setup.

8.1.1 PROLOGUE section
The PROLOGUE section is like a MANIPULATE section, but it is invoked only once
at the start of the setup. You can use it to initialise values of fields or auxfields
before the MANIPULATE section is invoked.

AUXFIELDS (GLOBAL)
 GlobalCounter : INTEGER
PROLOGUE
 GlobalCounter:= 1000

MANIPULATE
 REPEAT
 InFile.READNEXT
 GlobalCounter:= GlobalCounter + 1
{etc}

The global auxfield GlobalCounter will start with value 1000 before the
MANIPULATE section is invoked. The Manipula setups maketest.man and
many2one.man use a PROLOGUE section.

Chapter 8: Advanced Manipula

400 Blaise 4.5

8.1.2 UPDATEFILE section

The UPDATEFILE section allows you to change data in an existing Blaise® file.
The update file declared in the UPDATEFILE section is available for both input and
output operations. The syntax is similar to that of the INPUTFILE or OUTPUTFILE
section. You can mix input and update sections in the same Manipula setup. For
example:

UPDATEFILE
 UpFile : NCS07 ('NCS07', BLAISE)

INPUTFILE
 InFile : InitHH ('InitHH.asc', ASCII)
LINKFIELDS
 Region = UpFile.Ident.Region
 Stratum = UpFile.Ident.Stratum
 SampleNum = UpFile.Ident.SampleNum

This example is taken from uphh.man, a setup that updates existing Blaise forms
with corrected information from an ASCII file.

With UPDATEFILE, you can read data into a Blaise data set in two or more stages,
perform calculations on an entire data file, check the data against the rules in the
RULES section of the data model, or update a data set with information from
another file through links.

Caution with computations
Be careful with your assumptions about the values of the fields when you make
computations. Once a field has been changed to a different value, subsequent
computations, IF conditions, and the like will be executed with that changed
value, not the original value of that field. There will be no record of the original
value anywhere once the Manipula job is finished. Compare this to the use of
INPUTFILE and OUTPUTFILE with and without data sharing in Section 8.2.1.

8.1.3 TEMPORARYFILE section
If your Manipula setup uses a temporary file (also called a scratch file) to hold
intermediate values, then you can use a TEMPORARYFILE section. A temporary
file is held completely in memory and is not stored on disk. For a large temporary
file, you have to be sure you have enough memory available.

A temporary file is not saved after the setup executes, so you must ensure that
you have transferred any data from the temporary file. Refer to the Reference
Manual or the on-line help for details.

 Chapter 8: Advanced Manipula

Developer's Guide 401

8.2 More About Files

In this section we discuss how to link files, the day file, a message file,
customised information files, and the file methods WRITE, KEEP, WRITEALL, and
KEEPALL.

8.2.1 Linking files and the LINKFIELDS subsection
When you have two or more INPUTFILE or UPDATEFILE sections, you usually
want to link records between the files. When you link files, you associate a record
in the main file (the first file) with a record in a link file (second or further file).

The link can be either static or dynamic. With a static link, Manipula finds
matching records based on fields named in a LINKFIELDS section. Dynamic
linking means that you have to control matching of records in the MANIPULATE
section. A static link requires a LINKFIELDS subsection while a dynamic link may
or may not use a LINKFIELDS subsection.

Static link
A static link automatically finds a matching record in the link file. You give
complete matching information in the LINKFIELDS subsection of the file section
by equating fields in the second file with fields in the main file. For example, in
the case of uphh.man:

INPUTFILE
 InFile : InitHH ('InitHH.asc', ASCII)
 LINKFIELDS
 Region = UpFile.Ident.Region
 Stratum = UpFile.Ident.Stratum
 SampleNum = UpFile.Ident.SampleNum

You cannot influence the linking in the MANIPULATE section if it is static linking.
The second file, the link file, must be sorted by the same fields. If the file is
ASCII, this is done automatically when the file is brought into memory. By
default, INMEMORY = YES is invoked if the link file is an ASCII file.

Dynamic link
Declare a dynamic link when you wish to personally take control of the matching
in the MANIPULATE section. The LINKFIELDS section for a dynamic link for the
preceding example is as follows:

Chapter 8: Advanced Manipula

402 Blaise 4.5

LINKFIELDS
 Region
 Stratum
 SampleNum

If the link file is an ASCII file, the LINKFIELDS subsection is required. If the link
file is a Blaise file, the LINKFIELDS subsection is not required.

To find a matching record in the link file, in the MANIPULATE section use a
SEARCH and READ together, or use a GET.

Blaise files as link files
Blaise files can be link files, but the link fields have to be a primary key. If the
link file is a Blaise file and there is no LINKFIELDS subsection to a file section,
you can still dynamically link files through manipulations in the MANIPULATE
section.

8.2.2 Day file
A day file, or log file, can be created to record the time and date that various
Manipula setups were executed. This can be useful to ensure that a series of jobs
were run in the correct order, or that they were run at all. Manipula adds to this
file automatically as Manipula is executed.

You can write a line of text that will appear in the day file with the DAYFILE
instruction. The day file is written if the setting DAYFILE is present in the global
SETTINGS section or if you ask for it on the command line with the /D option. If
the file is already there, information is appended; otherwise it is created. See
Chapter 7 and the Reference Manual for more details.

8.2.3 Message file
You can use a message file to help debug Manipula setups or record other
problems and events. Manipula writes system problems to the message file. For
example, if there is a run-time error or a subscript error, then Manipula will write
a message to this file.

You can write additional information to the message file with the MESSAGE
instruction. Manipula provides a default message file name, but you can override
this with the MESSAGEFILE setting or from the command line with the /R option.

 Chapter 8: Advanced Manipula

Developer's Guide 403

See the Reference Manual and Chapter 7 for more information about the message
file options.

When arrays are used, it is a good idea to have the global setting as follows:

SETTINGS
 SUBSCRIPTERROR = MESSAGE

This way, if you have a subscript error in written code, a note will be written in
the message file.

8.2.4 Customised information files
You can create your own customised information files by using normal Manipula
techniques. For example, suppose you are importing data into Blaise and you
have some ability to detect bad data when it comes into the data set. You can
write a message to an output file which is an ASCII text file.

8.2.5 File methods WRITE, KEEP, WRITEALL, and KEEPALL
Manipula allows you to time the writing of a file. The WRITE method (which is
usually used) writes to the data file at the moment it is reached in the
MANIPULATE section. Conversely, KEEP writes to the file only at the end of the
MANIPULATE section. Therefore, the difference with WRITE is that the whole
MANIPULATE section is executed first, so values of variables may be changed
after the KEEP instruction, before the record is actually written to the file.

WRITEALL writes all files when it is reached. It has the same effect as specifying a
WRITE instruction for all files separately. KEEPALL writes all files at the end of the
MANIPULATE section. It has the same effect as specifying a KEEP instruction for
all files separately.

Chapter 8: Advanced Manipula

404 Blaise 4.5

8.3 Example File Structures

Data files can have different kinds of structure or storage formats. The Manipula
techniques you use are dictated by the structures of the files.

If you receive data from other organisations or from other software packages, the
files are often not in the format needed for subsequent processing. The following
examples show a few common structures for ASCII files. They are based on
name and address manipulation, a common use of Manipula. (Blaise data files
can also have different structures based on blocks. See Chapter 4 for details.)

The Blaise data model ncs07.bla is an example of a rostered household
instrument that has address information at the highest level and individual
information in the person roster at a lower level. There are many ways
information can appear in an ASCII file or files, as shown on the following pages.

8.3.1 Address and roster information in one file
The household address information and the person information that appear in the
roster all may be in one file with the following format:

[ID info] [Address info] [Person 1] ... [Person 5]

An example of this is in the file initfile.asc. Its data definition is as follows:

DATAMODEL InitFile {Goes with InitFile.ASC file}
 FIELDS
 Region : INTEGER[2] {ID information}
 Stratum : INTEGER[4]
 SampleNum: INTEGER[4]
 Street : INTEGER[27] {Address information}
 Apartment: STRING[3]
 Town : STRING[20]
 State : STRING[20]
 PostCode : STRING[10]
 PhoneNum : STRING[10]
BLOCK BMember {Roster information}
 FIELDS {repeated 5 times}
 Age : INTEGER[2]
 FirstName: STRING[12]
 SurName : STRING[18]
ENDBLOCK
 Member : ARRAY [1..5] OF BMember
ENDMODEL

 Chapter 8: Advanced Manipula

Developer's Guide 405

In this file, there is physically one line in the ASCII file for each form in the
Blaise file. (A programmer would say that there is one physical record per logical
record in this ASCII file.)

The following examples illustrate the ways in which to deal with data in different
file formats depending on where they are coming from or to where they are going.
Manipula has facilities to handle all of these situations and more:

8.3.2 Address and roster information in separate files
The same information may be held in two files, one for the address information,
the other for the roster information. Both files hold the necessary identification
fields to allow them to be linked together. The first file of identification and
address information requires only one line per Blaise form. Its format is as
follows:

[ID info] [Address info]

A file that holds address information in this format is inithh.asc. Its definition
is:

DATAMODEL InitHH {Goes with InitHH.ASC file}
 FIELDS
 Region : INTEGER[2] {ID information}
 Stratum : INTEGER[4]
 SampleNum: INTEGER[4]
 Street : STRING[27] {Address information}
 Apartment: STRING[3]
 Town : STRING[20]
 State : STRING[20]
 PostCode : STRING[10]
 PhoneNum : STRING[10]
ENDMODEL

The corresponding person roster information is usually held in one of two
different file formats. The first format holds all person roster information for a
Blaise form on one line of the ASCII file as illustrated in the following example:

[ID info] [Person 1] . . . [Person 5]

An ASCII data file that holds roster information in this way is initros1.asc.
Its definition is as follows:

Chapter 8: Advanced Manipula

406 Blaise 4.5

DATAMODEL InitRost {Goes with InitRos1.ASC file}
FIELDS
 Region : INTEGER[2] {ID information}
 Stratum : INTEGER[4]
 SampleNum: INTEGER[4]
BLOCK BMember
 FIELDS
 Age : INTEGER[2] {Roster information}
 FirstName: STRING[12] {repeated 5 times}
 SurName : STRING[18]
 ENDBLOCK
 Member : ARRAY [1..5] OF BMember
ENDMODEL

A second format for the roster information is to have only one person's
information per line of the file as illustrated in the following example:

[ID info] [Person 1]
 .
 .
 .
[ID info] [Person 5] {Up to this number}

Since not every household will have up to five members, the actual file may have
a variable number of lines per Blaise form as illustrated in the following example:

[ID 1] [Person 1]
[ID 1] [Person 2]
[ID 1] [Person 3]
[ID 2] [Person 1]
[ID 2] [Person 2]
[ID 2] [Person 3]
[ID 2] [Person 4]
[ID 3] [Person 1]
etc.

Its definition is as follows:

DATAMODEL InitRos1 {Goes with InitRos2.ASC file}
 FIELDS
 Region : INTEGER[2] {ID information}
 Stratum : INTEGER[4]
 SampleNum: INTEGER[4]
 Age : INTEGER[2] {Roster information}
 FirstName: STRING[12] {stated only one time}
 SurName : STRING[18]
ENDMODEL

 Chapter 8: Advanced Manipula

Developer's Guide 407

A file corresponding to the above definition is initros2.asc. (A programmer
would say that there are possibly several physical records per logical record in
this file.)

Alternate file structures in one file
It is possible to have address and roster information in one file with alternate
formats for different types of lines. For example:

[ID info] [RecType] [Address info] {record type 1}
[ID info] [RecType] [Person 1] {record type 2}
 .
 .

[ID info] [RecType] [Person 5] {Up to this number}
etc.

In this situation, you must have one data description for the address type of line
and an alternative data description for the person roster type of line. In this kind
of file, there must be some way to determine which data description applies to
which line. This is represented by RecType above.

8.4 More About MANIPULATE

In this section we examine some features you can use in the MANIPULATE section.

8.4.1 Checking rules
CHECKRULES invokes all of the rules of a data model at one time for all selected
forms in a Blaise data set. For example, you might want to import data from
another source or you might want to apply additional edits that were not applied
during data collection. This is done with a CHECKRULES setting (global or local),
or a CHECKRULES method in the MANIPULATE section. The former may be used if
you want to check all forms in a file, the latter if you wish to check only some
forms in a file. See the setup checkall.man for an example.

If you want to check only part of a file and you have a secondary key that says
which part of the file should be checked, then use the STARTKEY key word to skip
past the part of the file that does not need to be checked.

Chapter 8: Advanced Manipula

408 Blaise 4.5

8.4.2 Form correctness status
The FORMSTATUS method in Manipula returns the correctness status of a form.
There are four correctness statuses in Blaise: clean, suspect, dirty, and
notchecked. The correctness status of a form depends on the type of errors in it.
Blaise has three kinds of errors: hard, soft, and route. If there are hard or route
errors in the form, then the correctness status is dirty. If there are only soft errors,
the form is suspect. If there are no errors, the form is clean. If the form has never
been checked, then the correctness status is notchecked.

ERRORCOUNT
The ERRORCOUNT function returns the number of errors of a specified type in a
particular form. This function is meaningful only if the FORMSTATUS of the form
is other than notchecked. For example, if you have a file called infile:

MANIPULATE
 IF Infile.FORMSTATUS <> NOTCHECKED THEN
 NumRouteError:= ERRORCOUNT(ROUTE)
 NumHardError:= ERRORCOUNT(HARD)
 NumSoftError:= ERRORCOUNT(SOFT)
 ENDIF

SUPPRESSCOUNT
Blaise allows you to suppress soft errors. When a soft error is suppressed, it is no
longer considered an error. Thus, the ERRORCOUNT(SOFT) will not count
suppressed errors. To find the number of suppressed soft errors, use the
SUPPRESSCOUNT function.

SELECTSTATUS
To select a record to process based on the correctness status, use the
SELECTSTATUS setting. For example:

INPUTFILE
 InFile NCS07('NCS07', BLAISE)
 SETTINGS
 SELECTSTATUS = (SUSPECT, DIRTY)

Only the forms with the correctness status suspect or dirty will be processed.

 Chapter 8: Advanced Manipula

Developer's Guide 409

8.4.3 Block history
Blaise tracks the history of every block, so it knows whether data in it have been
changed or not. A new block always has the history new. You use RESETHISTORY
in the MANIPULATE section to change the block's history to unchanged. If data in
the block are changed anywhere in the Blaise system, then the history is
automatically set to changed until RESETHISTORY is invoked again in Manipula.

The HISTORY or RESETHISTORY function can be applied to any block including
the main block. For example:

USES
 NCS07

UPDATEFILE
 UpFile : NCS07('NCS07', BLAISE)

OUTPUTFILE
 OutFile = UpFile('NCS07OUT', BLAISE)

MANIPULATE
 IF (UpFile.HISTORY = CHANGED) THEN
 OutFile.WRITE
 UpFile.RESETHISTORY
 UpFile.WRITE
 ENDIF

You have to WRITE the update file in order to record the new status of unchanged.
To do the same for a block called Address, use the dot notation, as shown in the
following example:

MANIPULATE
 IF (UpFile.Address.HISTORY = CHANGED) THEN
 OutFile.WRITE
 UpFile.Address.RESETHISTORY
 UPFile.WRITE
 ENDIF

8.4.4 Counting forms
You can count forms in a file with the FORMCOUNT function. For example:

NumForms:= FORMCOUNT

You can also use FORMCOUNT in a condition, as shown in the following example:

Chapter 8: Advanced Manipula

410 Blaise 4.5

SETTINGS
 AUTOREAD = NO

MANIPULATE
 FOR I:= 1 TO InFile.FORMCOUNT DO
 InFile.READNEXT
 . . .
 ENDDO

In this example, all records are read.

8.4.5 AUTOREAD = NO
Most setups require Manipula to read one record from the main file, do
something, then read the next record. Since this is the most common situation, a
default setting AUTOREAD = YES causes the main file to be read in this way.
Because this is the default setting, you do not have to write it.

Sometimes, however, you do not want to read through the main file sequentially,
or perhaps you want to cycle through it several times. In this case, you can control
the reading of the main file with the global setting AUTOREAD = NO. Use a
READNEXT instruction enclosed within a loop to read the main file. The setup
maketest.man is an example of AUTOREAD = NO:

SETTINGS
 AUTOREAD = NO
{much code skipped}
PROLOGUE
 GlobalCounter:= 1000
MANIPULATE
 REPEAT
 InFile.READNEXT
 GlobalCounter:= GlobalCounter + 1
 OutFile.SampleNum:= GlobalCounter
 OutFile.WRITE
 IF InFile.LASTRECORD THEN
 InFile.RESET
 ENDIF
 UNTIL GlobalCounter = 2000

This setup will loop through all the records of the input file until 1,000 records
are written in the output file. Every time the last record is reached, the input file is
reset, which puts the file pointer at the top of the file. The REPEAT-UNTIL with the
READNEXT controls the reading of the main file.

 Chapter 8: Advanced Manipula

Developer's Guide 411

8.4.6 Procedures
For some demanding uses of Manipula, especially those written by Cameleon
setups in which the same repetitive code is written time after time, procedures can
save thousands of lines of Manipula code. Where complicated code is used twice
or more, procedures can save a lot of maintenance.

There are two types of procedures in Manipula that are used for repetitive tasks:
Manipula procedures and Dynamic Link Library procedures (known as DLL
procedures or DLLs).

Manipula procedures
Suppose you have three assignments that are made in different places in the
MANIPULATE section. They are put in a PROCEDURE before the MANIPULATE
section:

PROCEDURE WritePerson
 UpFile.Household.Person[H].Age:=
 RosterNameFile.Age
 UpFile.Household.Person[H].FirstName:=
 RosterNameFile.FirstName
 UpFile.Household.Person[H].SurName:=
 RosterNameFile.SurName
ENDPROCEDURE

To use the procedure in the MANIPULATE paragraph, just use its name:

MANIPULATE
. . .
 WritePerson

To make the procedure reusable, you can use parameters. The same procedure is
shown in the following example, only this time using parameters:

PROCEDURE WritePerson
PARAMETERS
 IMPORT HNum : INTEGER
INSTRUCTIONS
 UpFile.Household.Person[HNum].Age:=
 RosterNameFile.Age
 UpFile.Household.Person[HNum].FirstName:=
 RosterNameFile.FirstName
 UpFile.Household.Person[HNum].SurName:=
 RosterNameFile.SurName
ENDPROCEDURE

Chapter 8: Advanced Manipula

412 Blaise 4.5

If this procedure is held in the file writeper.prc, then you can include it in the
setup:

INCLUDE 'WritePer.Prc'

In the MANIPULATE section, to call a procedure with a parameter, use a parameter
list:

WritePerson (H)

Dynamic Link Libraries
The use of DLLs is covered thoroughly in Chapter 5. It is also discussed in the
ASCII file manidll.rtf in the Blaise system folder. Whether you use Manipula
procedures or DLLs depends on the application at hand. Wherever possible, you
should use Manipula procedures and save DLLs for things that Manipula truly
cannot do. Possible uses of DLLs include:

• Obtaining information from Windows®: current directory information, current
drive, or check the amount of free disk space.

• Implementing trigonometric functions.

• Reading from or writing to different databases.

8.4.7 Block computations
Manipula allows block computations between blocks that have the same data
definition. Blocks have the same data definition if they have the same number of
fields in the same order, each with the same type definition. The different blocks
do not need to have the same field names. When a block computation is to be
performed, Manipula checks to make sure that the blocks involved in the block
computation are the same, including any subblocks.

You can invoke block computations between two blocks in one data model,
between two blocks in different data models, or between a block in a data model
and one in an AUXFIELDS section of the Manipula setup. In the setup
many2one.man, there is a block in the input file called IdAddress and another
identically defined block in the AUXFIELDS section called AuxIdAddress. To
transfer data from one to another, you can use the simple assignment statement:

 Chapter 8: Advanced Manipula

Developer's Guide 413

AuxIdAddress:= InFile.IdAddress

The one assignment above takes the place of N assignments, where N is the
number of fields in the blocks. Block computations not only save a lot of coding,
they speed up processing because Manipula will transfer all data in a block as one
entity, not as separate fields.

8.4.8 Functions
Functions can save a lot of programming, and Manipula provides a wide range of
functions. Refer to the Reference Manual for a list and explanations.

8.4.9 Exits from loops
When you have array processing of blocks, often some or most of the blocks do
not hold data. For example, in the data model ncs07.bla, there is space for 20
people in the household roster. Usually, there will be five or fewer members of
the household. You should not have to loop through the array 20 times if you can
detect that some array blocks are not filled in.

In Manipula, for every looping construct, there is a way to leave the loop before
running through all instances of a block. This is demonstrated in the Manipula
setup initboth.man.

FOR I:=1 TO 6 DO
 IF InFile2.Member[I].Age <> EMPTY THEN
 (do something)
 ELSE
 EXITFOR
 ENDIF
ENDO

As soon as Infile2.Member[I].Age is empty, the loop will be exited. Over many
forms, this can save a lot of looping. The efficiency of this method depends on
having a field, such as Age above, that is always filled. If the field in the condition
is empty when there are other data in the block or in succeeding blocks, then
some records will be missed.

Other constructs with exiting capability are WHILE-DO, which you can exit with
EXITWHILE, and REPEAT-UNTIL, which can be exited with EXITREPEAT.

Chapter 8: Advanced Manipula

414 Blaise 4.5

8.4.10 Stopping Manipula
You can stop a Manipula setup with three instructions: READY, HALT, and PAUSE.

READY
The READY instruction stops the current MANIPULATE section. If there are further
sections in the setup such as SORT, then these other sections will be executed. If
there are no further sections in the Manipula setup, then the setup is stopped.

For example, if you want the first 100 records of a data set for a test, you can do
the following:

MANIPULATE
 OutFile.WRITE
 IF InFile.RECORDNUMBER = 100 THEN
 READY
 ENDIF
SORT
 ...

The SORT section will be carried out on the 100 records.

HALT
The HALT instruction stops the Manipula setup regardless of whether there are
further instructions or sections in the setup. You may wish to check that a value is
in place for a parameter before continuing. For example:

PROLOGUE
 IF PARAMETER = '' THEN
 DISPLAY('PARAMTER not specified')
 HALT
 ENDIF
MANIPULATE
 OutFile.WRITE
 IF InFile.RECORDNUMBER = 100 THEN
 READY
 ENDIF
SORT
 etc.

In this setup, if the parameter is not set from the command line or in the Manipula
run parameters, then the whole setup is halted regardless of which sections follow
the PROLOGUE section. The HALT instruction can be used in the MANIPULATE
section as well.

 Chapter 8: Advanced Manipula

Developer's Guide 415

PAUSE
The PAUSE instruction stops Manipula temporarily until you click the OK button.
If you press the Cancel button, you will be prompted to stop the execution of the
setup.

8.4.11 Debugging Manipula setups
Some debugging methods have already been covered. For example, the message
file, the day file, and any customised information file you create can all help you
trace problems. The PAUSE instruction will let you inspect the Manipula progress
on the screen. Another useful instruction for debugging is the DISPLAY
instruction.

DISPLAY
The DISPLAY instruction allows you to display any information on the screen
when the setup is executed. If you give the system the WAIT sub-instruction, it
will pause until you press any key, similar to the PAUSE instruction.

DISPLAY('In Prologue, Address = '+ Address, WAIT)

In production, use braces { } to comment out the WAIT sub-instruction:

DISPLAY('In Prologue, Address = '+ Address {, WAIT})

To improve performance in production, comment out the DISPLAY instruction
altogether.

Test data set
A well-conceived test data set is very useful for debugging both Data Entry
Program instruments and Manipula setups.

Chapter 8: Advanced Manipula

416 Blaise 4.5

8.5 Manipula and Its Environment

This section discusses the influence of command line parameter strings and
environment variables on Manipula. It also discusses local area network issues.

8.5.1 Command line parameter strings
You can pass a parameter string to a Manipula setup from the command line, a
batch file, or a Maniplus setup. The parameter string can be used to influence the
behaviour of the setup. From the setup initial1.man:

MANIPULATE
 IF PARAMETER <> 'Init' THEN

In this setup, if the command line parameter is Init then only household address
information is read into a Blaise data set. Otherwise, the address plus additional
person-level information is read in.

To pass information to the Manipula setup from the command line, use the /P
command line option. An example:

Manipula Initial11.MAN /PInit

You can also pass multiple parameters separated by a semicolon; for instance:

Manipula Asetup.MAN /P1996;5

In the MANIPULATE section, you can refer to the second parameter as follows:

IF PARAMETER(2)= '5' THEN

ENDIF

 Chapter 8: Advanced Manipula

Developer's Guide 417

! Note that the reference to a parameter is case sensitive.

8.5.2 Environment variables
Another way to pass information to a Manipula setup is to use the environment
variable function ENVVAR. An environment variable holds information that can
be accessed by any program.

You can use environment variables to pass information to the setup. Typically
you do this in a batch file (.bat extension) before calling the Manipula setup.
For example, a .bat file might look like this:

SET BLAISEUSER=JENNIFER
SET TASK=CADI_
CALL Manipula SETUPEXA.MAN /PInit /E

In this way, you can put the name Jennifer directly into reports or IF conditions on
the type of task at hand. You must be careful with the SET function. It does not
allow spaces between the variable name and the intended value.

USERNAME
The function USERNAME gives you access to the environment variable
BLAISEUSER. If this environment variable has not been set, the function returns
the name of the current user as determined by the operating system. Examples of
USERNAME are:

OneLine:= 'User name: ' + USERNAME
OutFile.WRITE

IF USERNAME = 'JENNIFER' THEN

Environment settings in Windows® registry
You can store environment settings also in the registry. The Blaise system will
also search in the registry under key HKEY_CURRENT_USER\Environment\.
The system will first look for the environment variable in the environment. Only
when the variable can not be located there will the registry be used.

Chapter 8: Advanced Manipula

418 Blaise 4.5

If you want to use the environment variable BLAISEUSER then you can enter the
string value BLAISEUSER in the registry under key
HKEY_CURRENT_USER\Environment.

You can use the program RegEdit.exe (part of the Windows® operating system) to
modify your registry.

ENVVAR
If you want to use any environment variable name, then use the function ENVVAR.
This function takes a parameter, the name of the environment variable, and
returns the value of that environment variable. For example:

ENVVAR('TASK')

returns the value of the environment variable, which may be something like
READIN or CADI_.

Notice that you can also get hold of the environment variable BLAISEUSER
through:

ENVVAR('BLAISEUSER')

8.5.3 Local area network (LAN) issues
Blaise runs well on local area networks (LANs), but there can be conflicts when
you try to mix interactive processes using the Data Entry Program (DEP) and
batch processes using Manipula. For example, suppose you want to run a
Manipula setup on a Blaise data set but people are currently using that same data
set in the DEP. The Manipula setup may have to read all forms, but some of them
might be in use when Manipula gets to them. You can designate whether the data
file can be shared between Manipula and the DEP. If you allow the data file to be
shared, Manipula lets you either skip any forms in use or stop and wait until the
form is cleared.

ACCESS
The ACCESS setting specifies whether a data file can be shared or if Manipula
should have exclusive use of it. The default is for exclusive use. To allow
Manipula to share a file with the DEP, use:

 Chapter 8: Advanced Manipula

Developer's Guide 419

SETTINGS
 ACCESS = SHARED

This can be a global setting for all files, or a local setting for individual files. If
you use the exclusive setting and you try to run a Manipula setup on a file already
in use, Manipula will report 'Waiting for the release of a locked file' until the file
is released by the DEP.

If the ACCESS setting is for shared data files, be sure to thoroughly test the process
before implementing it.

ONLOCK
If the setting ACCESS is for shared use of data files, then you must designate the
behaviour of Manipula when it runs into a form already in use. Use the ONLOCK
setting. As a default, ONLOCK will wait for a form to become free before
continuing. To skip over a form that is being used by another application, use:

SETTINGS
 ONLOCK = CONTINUE

The appropriate value of ONLOCK depends entirely on the application and the
preferences of the developer and user. If Manipula must wait for forms to be
released, then some setups can take a very long time to run. If Manipula must skip
forms that are in use, then your output may be incomplete.

However, ONLOCK = CONTINUE has its uses. For example, suppose you have a
Computer Assisted Telephone Interviewing (CATI) data set and an edit data set,
and you want to move completed CATI forms to the edit data set. Suppose you do
not care if a few forms are missed initially, because you can always pick up those
forms at a later time. Your concern at the moment is expediting the process.

You can consider using the STARTKEY option to skip the part of the data file that
you do not want. For example, if you have a secondary key that tracks the
completion status of the form, if you skip incomplete forms (including those that
the interviewers are calling on right at that moment), then you can go to the part
of the file you really need.

CATI Emulator (Btemula.exe)
The CATI simulation utility btemula.exe can help you test different scenarios
with ACCESS and ONLOCK. This emulation utility can play various scripts of test
interview data on a LAN. You can have several or many workstations working

Chapter 8: Advanced Manipula

420 Blaise 4.5

with btemula and test Manipula setups manually on another workstation. With
this, you can experiment with different processing scenarios to see which is best.

Concurrent tasks on one data file
It is possible to run different tasks on the same file. There is nothing wrong with
having interviewers and data editors operating on the same data set in different
modes of DEP use. As noted above, there are several ways to handle this, and you
must experiment to see what is best for your organisation.

Avoiding concurrent DEP and Manipula use
If you want to avoid the issue of concurrent use of the DEP and Manipula
altogether, then the monitor.exe tool can inform you if anyone is currently
using a Blaise data set.

8.6 Reformatting Files

This section discusses how to reformat files from one record to many records, or
from many records to one record. We use two ASCII to ASCII examples. The
examples would work just as well for Blaise to Blaise, ASCII to Blaise, or Blaise
to ASCII, but then the Blaise data models might not be defined in the USES
section of the setup.

8.6.1 One physical record to many
You might want to reformat a file that has all of one form's data in one physical
line to a file where several physical lines in the file are used to represent one
form's data. The example Manipula program we use is one2many.man. It
reformats data from this format:

[ID info] [Address info] [Person 1] ... [Person 5]
etc.

to the following format:

 Chapter 8: Advanced Manipula

Developer's Guide 421

[ID info] [Address info] [Person 1]
 .
 .
 .
[ID info] [Address info] [Person 5]
etc.

This type of reformatting might be appropriate for a base household survey that is
followed by individual surveys. In the follow-on surveys, the sampling unit is the
individual, not the household. Thus we need to copy the address information for
each one so that it can be verified in each successive contact.

Steps for one record to many
The following numbered steps are used to do this:

• {1} Define the input data model and data file name.

• {2} Define the output data model and data file name.

• {3} Read a record from the input data model. This is done automatically
since, by default, AUTOREAD = YES.

• {4} Write the address information to the output file. For every input record,
cycle through the person blocks. For every block with data, write a new line
in the output file by using a FOR-DO loop in the MANIPULATE section.

Note that each step number has a corresponding part in our sample setup and is
identified in the setup by the number in brackets { }:

Example setup one2many.man
The following example illustrates a reduced version of the Manipula setup
one2many.man:

Chapter 8: Advanced Manipula

422 Blaise 4.5

USES
 {1}
 DATAMODEL InitFile {Goes with InitFile.ASC file}
 BLOCK BIdAddress
 FIELDS
 Region : INTEGER[2]
 Stratum : INTEGER[4]
 SampleNum: INTEGER[4]
 Street : STRING[27]
 Apartment: STRING[3]
 Town : STRING[20]
 State : STRING[20]
 PostCode : STRING[10]
 PhoneNum : STRING[10]
 ENDBLOCK
 BLOCK BMember
 FIELDS
 Age : INTEGER[2]
 FirstName: STRING[12]
 SurName : STRING[18]
 ENDBLOCK
 FIELDS
 IdAddress : BIdAddress
 Member : ARRAY [1..5] OF BMember
 ENDMODEL

 {2}
 DATAMODEL RsltFile {Goes with RsltFile.Asc file}
 BLOCK BIdAddress
 FIELDS
 Region : INTEGER[2]
 Stratum : INTEGER[4]
 SampleNum: INTEGER[4]
 Street : STRING[27]
 Apartment: STRING[3]
 Town : STRING[20]
 State : STRING[20]
 PostCode : STRING[10]
 PhoneNum : STRING[10]
 ENDBLOCK
 BLOCK BMember
 FIELDS
 Age : INTEGER[2]
 FirstName: STRING[12]
 SurName : STRING[18]

 ENDBLOCK
 FIELDS
 IdAddress : BIdAddress
 Member : BMember
 ENDMODEL
{1}
INPUTFILE
 InFile : InitFile ('InitFile.asc', ASCII)

{2}
OUTPUTFILE
 OutFile : RsltFile ('RsltFile.asc', ASCII)

 Chapter 8: Advanced Manipula

Developer's Guide 423

AUXFIELDS (GLOBAL)
 GlobalSampleNum : INTEGER

AUXFIELDS
 I : INTEGER

MANIPULATE
 {3}
 { input records read in automatically due to }
 { AUTOREAD = YES }
 OutFile.IdAddress:= InFile.IdAddress {Block comp}
 {4}
 FOR I:= 1 TO 5 DO
 IF InFile.Member[I].Age > 0 THEN
 GlobalSampleNum:= GlobalSampleNum + 1
 OutFile.Member:=
 InFile.Member[I] {Block Comp}
 OutFile.IdAddress.SampleNum:= GlobalSampleNum
 OutFile.WRITE
 ENDIF
 ENDDO

The setup above reformats the data to one physical record per individual. It also
assigns a sample number, or identification number, to each individual. In order to
assign a sequential sample number, you must define a counter that will keep its
value from one input record to another. You can define such a counter in a global
AUXFIELDS section as shown with the auxfield GlobalSampleNum above. In the
FOR-DO loop the value of GlobalSampleNum is incremented every time Age is
positive.

Another feature of Manipula, the use of block computations in two places, is
shown in the following example:

OutFile.IdAddress:= InFile.IdAddress

OutFile.Member:= InFile.Member[I]

8.6.2 Many physical records to one
You can also reformat a file from many physical records to one. This is more
difficult, because there are an undetermined number of physical records that have
to be combined into one record.

One strategy is to hold information from several records in memory until there are
no more input records from that form. When that situation is reached, then the
input records are written as one output record. You know a new form is reached
when the identification numbers change.

Chapter 8: Advanced Manipula

424 Blaise 4.5

Steps for many records to one
The following steps are used to reformat a file from many physical records to one.
In our example, we assume that the input file is sorted so that all physical records
of one form follow one another. As with our previous example, each step number
has a corresponding part in our example setup and is identified in the setup by the
number in brackets { }:

• {1} Define the input data model and data file name.

• {2} Define the output data model and data file name.

• {3} Define a holding place for data until it is time to read them out. Use
global auxfields for this.

• {4} Define a file writing procedure that can be used twice.

• {5} Read the first record from the input file and store the information in the
global auxfields.

• {6} Read another record from the input data model.

• {7} Determine if the new record belongs to a different form. If so, write the
combined record from the global auxfield to the output file.

• {8} Store the new input record's data in the global auxfield. Do this whether it
is the first record of a new form or an additional record of the same form.

• {9} When you arrive at the end of the input file, write the last record to the
output file.

Example setup many2one.man
The Manipula setup that does this is many2one.man. The following example
provides extracts of this setup. The first part of the setup identifies the input data
model and data file name and the output data model and data file name.

 Chapter 8: Advanced Manipula

Developer's Guide 425

USES
 {1}
 DATAMODEL RsltFile {Goes with RsltFile.Asc file.}
 BLOCK BIdAddress
 FIELDS
 Region : INTEGER[2] { 1 - 2}
 Stratum : INTEGER[4] { 3 - 6}
 SampleNum: INTEGER[4] { 7 - 10}
 Street : STRING[27] { 11 - 37}
 Apartment: STRING[3] { 38 - 40}
 Town : STRING[20] { 41 - 60}
 State : STRING[20] { 61 - 80}
 PostCode : STRING[10] { 81 - 90}
 PhoneNum : STRING[10] { 91 -100}
 ENDBLOCK
 FIELDS
 IdAddress : BIdAddress
 BLOCK BMember
 FIELDS
 Age : INTEGER[2] {101 - 102}
 FirstName: STRING[12] {103 - 114}
 SurName : STRING[18] {115 - 132}
 ENDBLOCK
 FIELDS
 Member : ARRAY [1..1] OF BMember
 ENDMODEL

 {2}
 DATAMODEL InitFile {Goes with InitFil2.ASC file.}
 BLOCK BIdAddress
 FIELDS
 Region : INTEGER[2] { 1 - 2}
 Stratum : INTEGER[4] { 3 - 6}
 SampleNum: INTEGER[4] { 7 - 10}
 Street : STRING[27] { 11 - 37}
 Apartment: STRING[3] { 38 - 40}
 Town : STRING[20] { 41 - 60}
 State : STRING[20] { 61 - 80}
 PostCode : STRING[10] { 81 - 90}
 PhoneNum : STRING[10] { 91 -100}
 ENDBLOCK
 FIELDS
 IdAddress : BIdAddress
 BLOCK BMember
 FIELDS
 Age : INTEGER[2] {101 - 102, 133 - 134, 165 -
 166, 197 - 198, 229 - 230}
 FirstName: STRING[12] {103 - 114, 135 - 146, 167 -
 178, 199 - 210, 231 - 242}
 SurName : STRING[18] {115 - 132, 147 - 164, 179 -
 196, 211 - 228, 243 - 260}
 ENDBLOCK
 FIELDS
 Member : ARRAY [1..5] OF BMember
ENDMODEL

{1}
INPUTFILE
 InFile : RsltFile ('RsltFile.ASC', ASCII)

{2}
OUTPUTFILE
 OutFile : InitFile ('InitFil2.asc', ASCII)

In this setup you need a global AUXFIELDS section to hold data in memory until
they are ready to be printed out. The block BIdAddress and the block BMember

Chapter 8: Advanced Manipula

426 Blaise 4.5

are defined identically to corresponding blocks used in the data models in the
USES section. This will enable block computations. The AUXFIELD block
BMember is arrayed five times and can hold up to five people's information.

{3}
AUXFIELDS (GLOBAL)
 BLOCK BIdAddress
 FIELDS
 {a bunch of fields here}
 ENDBLOCK
 BLOCK BMember
 FIELDS
 Age : INTEGER[2]
 FirstName: STRING[12]
 SurName : STRING[18]
 ENDBLOCK
 FIELDS
 InFileCounter : INTEGER
 GlobalCounter : INTEGER
 AuxRegion : INTEGER[2]
 AuxStratum : INTEGER[4]
 AuxIdAddress : BIdAddress
 AuxMember : ARRAY [1..5] OF BMember

You read the first data record and store its data in the auxfield blocks. You must
store the first record's identification information in AuxRegion and AuxStratum.
Since these are global auxfields, they will hold their values from one input record
to the next and thus can be used for comparison with the next record's
identification values.

The PROLOGUE section is executed only one time when the first record is read.
Other than that, it is like a MANIPULATE section.

{5}
PROLOGUE
 AuxRegion:= Infile.IdAddress.Region
 AuxStratum:= Infile.IdAddress.Stratum
 AuxIdAddress:= InFile.IdAddress {Block compute}
 AuxMember[1]:= InFile.Member[1] {Block compute}
 GlobalCounter:= 1

After storing the first record's information, you read the next record. Having read
the next form, you determine if its identification values are the same as those of
the previous form, which are held in global auxfields.

{7}
IF ((AuxRegion <> InFile.IdAddress.Region) OR
 (AuxStratum <> InFile.IdAddress.Stratum)) THEN

 Chapter 8: Advanced Manipula

Developer's Guide 427

If the next record's identification values are different, then fill in the values of the
output record and then write the record.

{7}
WriteOut {Procedure}

Flush the person roster in the auxfields because they are global and would
otherwise hold old, inappropriate values. Then reset the identification information
AuxRegion and AuxStratum to the new values and the new address information.

{8}
 {Init global auxfield blocks}
 FOR I:= 1 TO 5 DO
 AuxMember[I]:= EMPTY
 ENDDO

 AuxIdAddress:= InFile.IdAddress {Block compute}
 AuxMember[1]:= InFile.Member[1] {Block compute}
 AuxRegion:= InFile.IdAddress.Region
 AuxStratum:= InFile.IdAddress.Stratum

Information is written to the auxfields whether the input record is the first record
of a new form or a subsequent record of the same form. However, you have to
take care to put the person roster block in the correct auxfield array block. This is
done with a global auxfield counter.

ELSE
 {8}
 GlobalCounter:= GlobalCounter + 1
 AuxMember[GlobalCounter]:=
 InFile.Member[1] {Block Compute}
ENDIF

Finally, if the end of the input file is reached, write out the last output record.

{9}
IF InFile.LASTRECORD THEN
 WriteOut {Procedure}
ENDIF

Chapter 8: Advanced Manipula

428 Blaise 4.5

8.7 Importing Blocks of Data Into Blaise

In Chapter 7, converting data from Blaise to ASCII and ASCII to Blaise was
covered for simple cases where all data of the form are read in or out, the data
model is not very big, and there is little or no hierarchy in the data model. In these
cases, the Manipula setup is very simple, consisting of only a few lines. Chapter 7
further discussed how to condition the data conversion based on values found in
the data set. For example, it was shown how to read out only complete forms, or
how to read complete forms to one file and incomplete forms to another.

When you have large or hierarchical data models, you need more control of
where and how data are to be placed in the output data set. This is true whether
the output data set is Blaise or ASCII. For example, some data models consist of
thousands of potential questions, nested in hierarchies of blocks. If you were to
read data out using the techniques in Chapter 7, which Blaise and Manipula will
allow you to do, you would have one extremely long data record per form.
Usually, the data analysis software you use will not be able to handle such a long
data record.

You probably want some structure in the output data record. For example, you
might want all data collected in tables to be output in the same manner as they
appear on the screen, one row on top of another. To do this, use the block
structure of the data model.

If the survey is a follow-up to a previous one, or if you have name and address
information from your sampling frame, you might want to import the information
into the data files before starting the survey. For a hierarchical data model (such
as ncs07.bla), you import address information at the highest level and person
information into a lower level roster (table).

8.7.1 Address and roster information in one file
The simplest situation is where the household address and person data are all held
in one file and all information for one Blaise form is held on one line in the
ASCII file:

[ID info] [Address info] [Person 1] ... [Person 5]

An example of this is in initfile.asc. The Manipula setup that reads in the
data is initial.man. In this example, the input file does not have sample

 Chapter 8: Advanced Manipula

Developer's Guide 429

numbers assigned. In order to assign a sequential sample number during read-in,
declare a global auxfield:

AUXFIELDS (GLOBAL)
 GlobalCounter : INTEGER

In the MANIPULATE section, increment the counter GlobalCounter by 1 for every
input record.

Associate fields in the Blaise data model with fields in the ASCII file in the
MANIPULATE section. The following is for household address information:

MANIPULATE
IF Region <> EMPTY THEN
 GlobalCounter:= GlobalCounter + 1
 OutFile.Ident.Region:= Region
 OutFile.Ident.Stratum:= Stratum
 OutFile.Ident.SampleNum:= GlobalCounter
 OutFile.Address.Street:= Street
etc.

Since blocks between the data models are not identically defined, block
computations are not possible.

Because the person data are held in an array of blocks in both the Blaise data
model and the ASCII data file, handle these assignments in a FOR-DO loop.

FOR I:= 1 TO 5 DO
 IF InFile.Member[I].Age <> EMPTY THEN
 Outfile.Household.Person[I].Age:=
 InFile.Member[I].Age
 Outfile.Household.Person[I].FirstName:=
 InFile.Member[I].FirstName
 Outfile.Household.Person[I].SurName:=
 InFile.Member[I].SurName
 OutFile.Address.HHSize:= I
 ELSE
 EXITFOR
 ENDIF
ENDDO

The computations in the array will be done only if the Age field in the Ith roster
element in the ASCII file is not empty.

Chapter 8: Advanced Manipula

430 Blaise 4.5

8.7.2 Address and roster information in separate files
If the address and roster information is in separate files, you can use different
strategies to read both files into the Blaise data file. You can:

• Write a Manipula program to combine the two ASCII files into one ASCII
file of the format used above in initial.man. Then use initial.man to
read data in.

• Import the household data first, then import the roster information. When you
import the roster file, update the existing Blaise file with an UPDATEFILE
section in the second Manipula setup. Link the files together in the Manipula
setup using the common identification values in the Blaise and ASCII files.

• Import the household data and the roster data at the same time from the two
ASCII files. Link files together in the Manipula setup using the common
identification values in the two ASCII files.

The first method is the more difficult one, and since you can handle this situation
with other techniques, it is not recommended. The second method is necessary if
you already have a Blaise file and you want to add data to it. The second method
is a little more difficult than the third method.

The third method of linking files in one Manipula setup is probably easiest,
because only one Manipula setup is necessary.

In the following sections, we demonstrate the second and third methods.

8.7.3 Two-stage ASCII read-in with UPDATEFILE
In this example, there is an ASCII file of address data that are to be read in at the
highest level of the data model, and a second ASCII file of data to be read in at a
lower level into a roster (table) in the Blaise instrument.

First, import the household address information. This is done with Manipula
setup inithh.man.

 Chapter 8: Advanced Manipula

Developer's Guide 431

In this setup you have assignments in the MANIPULATE section of the form:

OutFile.Ident.Region:= InFile.Region
OutFile.Address.Apartment:= InFile.Apartment

Once invoked, the Manipula setup inithh.man has initialised the Blaise data
set. At this point, the Blaise data set contains only some household-level address
information. We now want to add the person-level data in the roster.

Two roster structure situations
There are two situations to consider. Both situations have the same household
file:

[ID info] [Address info]

The situations differ in the structure of the second ASCII person roster file.

In the first situation, the file has the form:

[ID info] [Person 1] . . . [Person 5]

In the second situation, the file has the form:

[ID info] [Person 1]
 .
 .
 .
[ID info] [Person 5] {Up to this number}

In this case, you do not know ahead of time how many records in the person
ASCII file belong to the same Blaise form. This number will vary as you go from
one household to another.

In either case, since the person data are to be added to the already existing Blaise
data set, an UPDATEFILE section is needed.

UPDATEFILE
 UpFile : NCS07 ('NCS07', BLAISE)

Chapter 8: Advanced Manipula

432 Blaise 4.5

Situation 1: One line in the ASCII file corresponds to one Blaise form
In the first situation, all person information for one Blaise form is on one line of
the ASCII file. The setup for this is initros1.man, which reads in
initros1.asc. The INPUTFILE section for this setup is as follows:

INPUTFILE
 RosterNameFile : InitRost ('InitRos1.asc', ASCII)
LINKFIELDS
 Region = UpFile.Ident.Region
 Stratum = UpFile.Ident.Stratum
 SampleNum = UpFile.Ident.SampleNum

Since there is a one-to-one correspondence between a record in the Blaise data set
and the ASCII file, we can make an easy link between the two files. The
LINKFIELDS subsection of the INPUTFILE section associates link fields between the
two files. When Manipula reads a record from the first listed file, which is the
master file, it will automatically create a link with the second file. There is no
need to use file searches and reads in the MANIPULATE section. This automatic
linking is known as static linking. Since the link between the files is done
automatically, all that remains is to cycle through the person blocks and write to
the update file, the Blaise file:

MANIPULATE
 FOR I:= 1 TO 5 DO
 IF RosterNameFile.Member[I].Age <> EMPTY THEN
 HHSize:= HHSize + 1
 Household.Person[I].Age:=
 RosterNameFile.Member[I].Age
 Household.Person[I].FirstName:=
 RosterNameFile.Member[I].FirstName
 Household.Person[I].SurName:=
 RosterNameFile.Member[I].SurName
 ENDIF
 ENDDO
 Address.HHSize:= HHSize
 UpFile.WRITE

The household size field, HHSize, is calculated based on data in the ASCII file.

Situation 2: Several ASCII records per one Blaise form
In the second situation, the input ASCII file has up to several lines per Blaise
form. The setup we use is initros2.man. One way to handle this is to read in
one form at a time from the update file and then search the input file for a
matching record. Once the matching record is found, the second file should be
accessed repeatedly until there are no more matching records. When records no

 Chapter 8: Advanced Manipula

Developer's Guide 433

longer match, write out the update file record. The INPUTFILE section will look
like this:

INPUTFILE
 RosterNameFile : InitRos2 ('InitRos2.asc', ASCII)

LINKFIELDS
 Region
 Stratum
 SampleNum

In order to perform a SEARCH in the MANIPULATE section, you have to declare
link fields in the INPUTFILE section. Locating records using the SEARCH or GET
functions is known as dynamic linking. At this point, you do not need to associate
link fields with update file fields because this will be done in the MANIPULATE
section. The MANIPULATE section looks like this:

MANIPULATE
 Reg:= UpFile.Ident.Region
 Stra:= UpFile.Ident.Stratum
 SampN:= UpFile.Ident.SampleNum
 IF RosterNameFile.SEARCH(Reg, Stra, SampN) THEN
 RosterNameFile.READ
 H:= 1
 WritePerson {Procedure}
 FOR H:= 2 TO 6 DO
 RosterNameFile.READNEXT
 IF RosterNameFile.RESULTOK THEN
 IF NOT (RosterNameFile.SampleNum =
 UpFile.Ident.SampleNum) THEN
 EXITFOR
 ENDIF
 ENDIF
 WritePerson {Procedure}
 ENDDO
 ENDIF
 UpFile.WRITE

For each record in the update file (which is the master file, since it is listed first),
a SEARCH is performed in the ASCII file. If the search is successful, data are
copied into the update record in memory. Once the cycling is done, the update
record is written to a file on disk. In the MANIPULATE section, the procedure
WritePerson is invoked twice. It is defined in a PROCEDURE section just above the
MANIPULATE section.

Chapter 8: Advanced Manipula

434 Blaise 4.5

PROCEDURE WritePerson
 UpFile.Household.Person[H].Age:=
 RosterNameFile.Age
 UpFile.Household.Person[H].FirstName:=
 RosterNameFile.FirstName
 UpFile.Household.Person[H].SurName:=
 RosterNameFile.SurName
ENDPROCEDURE

You do not need to use the above PROCEDURE, but it is good programming
practice because it reduces repetitive code and is easier to maintain.

8.7.4 Reading in two ASCII files at the same time
In the examples above, the data from the two files were imported in stages. The
household data were read in first, followed by the person data. However, you can
read data in from both files at the same time by using link fields. Our example
here only applies when there is one record in the second file that corresponds to a
record in the first file.

In this type of setup (initboth.man), you need two input files:

INPUTFILE
 InFile1 : InitHH ('InitHH.asc', ASCII)

INPUTFILE
 InFile2 : InitRos1 ('InitRos1.asc', ASCII)

LINKFIELDS {Subection, not a LOCAL setting}
 Region = InFile1.Region
 Stratum = InFile1.Stratum
 SampleNum = InFile1.SampleNum

The first input file is the master file. In this setup, once a record is read from the
first input file, a link is established with a record in the second input file. Since
the link is with an ASCII file, the setting INMEMORY=YES is not needed.

This time, instead of an UPDATEFILE section, use an OUTPUTFILE section.

OUTPUTFILE
 OutFile : NCS07 ('NCS07', BLAISE)

The MANIPULATE section is just a series of assignments, with a FOR-DO loop to
cycle through all of the person blocks.

 Chapter 8: Advanced Manipula

Developer's Guide 435

MANIPULATE
 {InFile1}
 OutFile.Ident.Region:= InFile1.Region
 OutFile.Ident.Stratum:= InFile1.Stratum
 OutFile.Ident.SampleNum:= InFile1.SampleNum
 OutFile.Address.Street:= InFile1.Street
 ... {Many more statements}
 OutFile.Address.PhoneNum:= InFile1.PhoneNum
 {InFile2}
 FOR I:= 1 TO 6 DO
 IF InFile2.Member[I].Age <> EMPTY THEN
 Outfile.Household.Person[I].Age:=
 InFile2.Member[I].Age
 Outfile.Household.Person[I].FirstName:=
 InFile2.Member[I].FirstName
 Outfile.Household.Person[I].SurName:=
 InFile2.Member[I].SurName
 ENDIF
 ENDDO
 OutFile.Proxy:= No
 OutFile.WRITE

Note that InFile1 is sometimes used and InFile2 is used at other times. The data
definitions of the input files do not match those of the output file. Thus, you
cannot use block computations. This is the reason that, in this example, all
computations are field-level computations. You can rearrange the ASCII data to
meet the data definition of the output file. If you do so, then block computations
in the setup can be used.

Alternative record types in one input file
As mentioned above, you can have all address and roster information in one file,
but with different formats for the type of line. For example:

[ID info] [RecType] [Address info]
[ID info] [RecType] [Person 1]
 .
 .
 .
[ID info] [RecType] [Person 5] {Up to this number}
etc.

A Manipula setup that can read in this type of ASCII file is initaltr.man,
which reads in data from initaltr.asc. Here you have two data model
descriptions for the one input ASCII file in the USES section, and only one
INPUTFILE section:

Chapter 8: Advanced Manipula

436 Blaise 4.5

SETTINGS
 AUTOREAD=NO

USES
 {1}
 DATAMODEL MetaHH {Goes with the first type of record for households}
 FIELDS
 Region : INTEGER[2]
 Stratum : INTEGER[4]
 SampleNum: INTEGER[4]
 RecType : INTEGER[1]
 Street : STRING[27]
 Apartment: STRING[3]
 Town : STRING[20]
 State : STRING[20]
 PostCode : STRING[10]
 PhoneNum : STRING[10]
 ENDMODEL
 {2}
 DATAMODEL MetaPers {Goes with the second type of record for people}
 FIELDS
 Region : INTEGER[2]
 Stratum : INTEGER[4]
 SampleNum: INTEGER[4]
 RecType : INTEGER[1]
 Age : INTEGER[2]
 FirstName: STRING[12]
 SurName : STRING[18]
 ENDMODEL

{1 & 2}
INPUTFILE DataHH : MetaHH ('Initaltr.asc')
ALTERNATIVE
 DataPers : MetaPers

The INPUTFILE section has an ALTERNATIVE subsection. This indicates that
sometimes the data model datahh is used to describe the alternate types of lines
in the same input file, and at other times the data model datapers is used. The
field RecType, which is the 11th column in both data files, indicates which record
type definition should be used. The MANIPULATE section uses the record type in
an IF condition to know what to do:

IF DataHH.RecType = 1 THEN
 {assignments with data model DataHH}
ELSE
 {assignments with data model DataPers}
ENDIF

The format of the input file is another example of many physical records
belonging to one logical record. You have to hold the values of the output record
in memory until all appropriate input records have been read. In this setup, data
are assigned directly to the output file from the record of the input file.

 Chapter 8: Advanced Manipula

Developer's Guide 437

You have to prevent Manipula from resetting the values of the output record
every time an input record is read. Do this with the setting INITRECORD = NO,
which goes with the OUTPUTFILE section. Thus you take care of initialising the
output record in the MANIPULATE section.

{3}
OUTPUTFILE
 OutFile : NCS07 ('NCS07', BLAISE)
SETTINGS
 INITRECORD = NO

You initialise the output record in the MANIPULATE section with the INITRECORD
file method. It is appropriate to do this after you have detected another form's data
in the input file and after the output record has been written.

 WriteForm
 OutFile.INITRECORD

The same goal was accomplished in the setup many2one.man by using global
auxfields to hold output data until it was time to write them.

8.8 Exporting Blocks of Data from Blaise

This section discusses two types of data export: exporting blocks of data from a
Blaise data set in a form suitable for a relational database, and exporting one or a
few blocks of data to another package. Both techniques use a file type called
ASCIIRelational. A metadata description of the blocks of data is produced as
well.

8.8.1 ASCIIRelational file types
ASCIIRelational files are ASCII files that facilitate the interchange of data
between a Blaise data set and a relational database. In a relational database, data
for one overall entity are held in two-dimensional tables. For example, a main
table can hold names of companies. For each company in the main table, another
table can hold locations of the company. In the second table of locations, there
can be one or more records relating back to one entry in the main table of
company names.

Chapter 8: Advanced Manipula

438 Blaise 4.5

For this example, the company table is known as the parent table, and the
location table is the child table of that parent. Each row in the child table has a
pointer to the corresponding row in the parent table, and more than one child row
can point to the same parent row.

The way Blaise instruments are structured with blocks bears some resemblance to
the way relational databases store data. ASCIIRelational file types export data for
every block with independently defined data storage into its own file. Thus if
your data model has 50 blocks, each with independent data storage, then the
ASCIIRelational readout will produce 50 files. Usually you do not want that
many files, so Blaise gives you ways to reduce the number of files that are output
and to make them correspond to what the relational database is expecting.

In our example above, each row in the company table has pointers to the
appropriate rows in the location table. This is the reverse of the direction for a
relational database. Therefore, before a direct mapping between the
ASCIIRelational files and a relational database can be made, there have to be
conversions.

When you export data from Blaise using ASCIIRelational, an ASCII file is
produced for every block in Blaise with independently defined data storage. Each
ASCII file corresponds to a table in the relational database. The Manipula setup
to export data in ASCIIRelational form is very similar to the setup for exporting
ASCII data and is easily created using the Manipula Wizard:

SETTINGS
 DESCRIPTION = ‘BLAISE TO ASCIIRELATIONAL’

USES
 InputMeta ‘Mode1Name’

INPUTFILE InputFile1: InputMeta (‘BlaiseBD’, BLAISE)

OUTPUTFILE OutputFile1: InputMeta (‘AsciiRel’, ASCIIRELATIONAL)

MANIPULATE
 OutputFile1.WRITE

! Note that you do not specify a file extension for the ASCIIRelational file.

 Chapter 8: Advanced Manipula

Developer's Guide 439

8.8.2 EMBEDDED and ordinary blocks
There are two ways in which blocks can be declared that affect the data exported
from the Blaise database:

• Independent blocks (not embedded)

• Dependent blocks (embedded)

Consider the situations in the following data model. The situations are noted in
{ } brackets in the code.

{Situation 1, independently definded block type}

BLOCK BPerson
ENDBLOCK
FIELDS
 Person : BPerson

{Situation 2, embedded, dependently defined block type}

EMBEDDED BLOCK BPerson
ENDBLOCK
FIELDS
 Person : BPerson

{Situation 3a, subblock Person is independently defined from Situation 1
above}

TABLE THouseHold
 FIELDS
 Person : ARRAY [1..20] OF BPerson {from situation 1}
ENDTABLE
FIELDS
 HouseHold : THouseHold

{Situation 3b, subblock Person is dependently defined (embedded) from
Situation 2 above}

TABLE THouseHold
 FIELDS
 Person : ARRAY [1..20] OF BPerson {from situation 2}
ENDTABLE
FIELDS
 HouseHold : THouseHold

Chapter 8: Advanced Manipula

440 Blaise 4.5

{Situation 4}

TABLE THouseHold
 BLOCK BPerson {independent block}
 ENDBLOCK
 FIELDS
 Person : ARRAY[1..20] OF BPerson {20 instances}
ENDTABLE
FIELDS
 HouseHold : THouseHold

{Situation 5}

TABLE THouseHold
 EMBEDDED BLOCK BPerson {embedded (dependent)
 block type}
 ENDBLOCK
 FIELDS
 Person : ARRAY [1..20] OF BPerson
 {20 instances of embedded block type}
ENDTABLE
FIELDS
 HouseHold : THouseHold

{Situation 6}

TABLE THouseHold
 BLOCK BPerson {independent block}
 ENDBLOCK
 FIELDS
 Person : BPerson {1 instance}
ENDTABLE
FIELDS
 HouseHold : ARRAY [1..20] OF THouseHold

In situations 2, 3b, and 5, the block type BPerson is defined as part of the
surrounding block through the use of the key word EMBEDDED. In both Blaise and
its ASCIIRelational form, the blocks of data are stored as part of the surrounding
block. In situation 2, the surrounding block is the data model itself. In situations
3b and 5, the surrounding block is the table THouseHold.

Situation 3a differs from situation 4 only in where the block BPerson is defined.
In both, data for the block type BPerson are stored separately from the
surrounding block's data. However, you can modify situation 4 and store
BPerson's data with the surrounding block by using the key word EMBEDDED as
in situation 5. You can do the same with situation 3a if the block BPerson has the
EMBEDDED key word, even if it is defined in a different place in the data model.

When data are read out, each non-embedded block's data will be read out to a
separate file. There is enough information to maintain referential integrity for a
relational database that may hold these data. The format of the ASCIIRelational
files that are produced is:

 Chapter 8: Advanced Manipula

Developer's Guide 441

[Key] [InstanceNumber] [data [Sub-InstNumber] data]

Data from subblocks are stored separately unless they are embedded. If they are
not embedded, then the parent block will record a block sub-instance number for
that block in order to maintain referential integrity.

If data are read out using ASCIIRELATIONAL from the preceding situations, the
following ASCII data sets are produced:

Situation 1
An ASCII file is produced for the block type BPerson. There will be up to one
line per form. For example:

[Key 1] [BPerson data]

Situation 2
Data from the block type BPerson will be read out with data from the data model
level. For example:

[Key 1] [Data] [BPerson data] [Data]

Situations 3a and 4
A file is produced for the block type BPerson separately from the file produced
for the table type THouseHold. There can be up to 20 lines per Blaise form in the
ASCII file for block type BPerson. The format for the household data (the
numbers 1 to 20 are block sub-instance numbers) is:

[Key 1] [THouseHold data] [1 ... 20]

and for the person data:

[Key 1] [BPerson data]
 . . .
[Key 20] [BPerson data]

In the latter file, empty lines are not stored. In the first files, the block sub-
instance numbers are empty in that case.

Chapter 8: Advanced Manipula

442 Blaise 4.5

Situations 3b and 5
Data from block type BPerson are read out with data from the table type
THouseHold. The format is:

[Key 1] [THouseHold data] [BPerson] . . . [BPerson]

In this situation, space is held for all 20 instances of BPerson even if they do not
all hold data.

Situation 6
Data from block type BPerson are read into a separate file as in situations 3 and 4.
Data from the surrounding household block will be read out as:

[Key 1] [THouseHold data]
 . . .
[Key 20][THouseHold data]

ASCIIRelational file name extensions
By default, each block of data that is read out will be held in its own file. The file
name for each file of block data has the extension A??, where ?? represents a
number starting with 01 (for example, ncs07.a01). If there are more than 99
output files, then the extension starts with B??. Which number a file gets in its
extension depends on where it is defined in the data model.

Block metadata
The Cameleon metadata utility can produce descriptive information for each
output block. See Chapter 9 for details.

8.8.3 Exporting one or a few blocks of data
The easiest way to export one or a few individual blocks of data from Blaise is to
use the ASCIIRelational file type with the INCLUDEBLOCKS setting. For example,
to export just the block of address information, you would use the following
setup:

 Chapter 8: Advanced Manipula

Developer's Guide 443

USES
 NCS07

INPUTFILE
 InFile : NCS07 ('NCS07', BLAISE)

OUTPUTFILE
 OutFile : NCS07 ('NCS07', ASCIIRELATIONAL)
SETTINGS
 INCLUDEBLOCKS = (BAddress)

MANIPULATE
 OutFile.WRITE

Note that the INCLUDEBLOCKS = (BAddress) refers to the type name of the block,
not to the block field name Address. This setup name is addrsout.man. In the
data model ncs07, there is only one address block for each form. The file
ncs07.a01 will include one line of address information from each Blaise form.

Sometimes a block is used more than once in a data model (there are multiple
instances of a block). For example, a household roster might use the block type
BPerson up to 20 times in each form. The Manipula setup persnout.man will
read out data for each instance of the block type BPerson for which there are data
in the form:

USES
 NCS07

INPUTFILE
 InFile : NCS07 ('NCS07', BLAISE)

OUTPUTFILE
 OutFile = InFile ('Person', ASCIIRELATIONAL)

SETTINGS
 INCLUDEBLOCKS = (BPerson)

Use the type identifier of the block BPerson, not the block field name Person[I].

EXCLUDEBLOCKS
To export all but just a few blocks of data, you can use ASCIIRELATIONAL with
the key word EXCLUDEBLOCKS.

Chapter 8: Advanced Manipula

444 Blaise 4.5

Other block export techniques
It is possible to use other Manipula techniques to read out blocks of data. A
schematic of how to do this with the file type ASCII instead of ASCIIRelational
is shown:

USES
 NCS07
 IdAddress {A Blaise data model with just the
 address block and primary key fields}
INPUTFILE
 InFile : NCS07 ('NCS07', BLAISE)

OUTPUTFILE
 OutFile : IdAddres ('IdAddres.Asc', ASCII)

MANIPULATE
 OutFile.Ident:= InFile.Ident {block compute}
 OutFile.Address:= InFile.Address {block compute}
 OutFile.WRITE

By making a separate Blaise data model with just the Ident and Address block,
you can use Cameleon to produce the needed metadata. If you define the data
model address within the Manipula setup, you can still read out the data, but
then you do not have an automated way to produce the metadata.

ASCIIRELATIONAL
To import selected blocks of data into a Blaise data set without destroying other
blocks of data, use UPDATEFILE. You can use ASCIIRELATIONAL just as you can
use it for reading out data. The key words INCLUDEBLOCKS and EXCLUDEBLOCKS
cannot be used when reading in ASCIIRelational data.

8.9 Miscellaneous Uses of Manipula

In this section, we mention a few more ways to use Manipula setups.

8.9.1 Making a test data set
When producing an application, you must test it. After basic testing is done on the
instrument itself, you should give a volume test. Suppose you have made up some
test interviews. You can replicate the few you have made, taking care to give each
of the new copies unique identification numbers (primary keys). The Manipula

 Chapter 8: Advanced Manipula

Developer's Guide 445

setup maketest.man shows how this is done. It loops through an initial data set
of 18 names many times. It is an example of the use of AUTOREAD = NO.

8.9.2 Creating a library file for classify
Hierarchical coding is done with the CLASSIFY feature of Blaise. The syntax of
the coding file is awkward. If you have a source file of commodity names (or, in
the case of ncs07, cars), then you can use Manipula to convert the information
into the proper syntax. Once done, the Manipula setup can correctly produce the
library file very quickly, even for tens of thousands of records. The example
Manipula setup carclass.man can be found in \Doc\Chapter5 in the Blaise
system folder.

8.10 Performance Issues

If you have large numbers of records in a data file, a very large data model, or
both, the speed of Manipula can become a concern. There are several ways to
speed up Manipula when it has a large task to carry out.

8.10.1 Improving performance with Manipula features
When Manipula executes a setup, it has default ways of behaving that make it
very easy to write setups for common tasks. Sometimes the default behaviours
can slow down processing for demanding applications.

If you do not need one of these automated features, you might be able to speed up
processing. For example, you do not always want to connect data models, or
automatically copy data from one to the other. These default behaviours are
explained in the following table:

Chapter 8: Advanced Manipula

446 Blaise 4.5

Figure 8-1: Default behaviours in Manipula
Default Behaviour Performance Comment

A data tree, a representation of the data
corresponding to the structure of an
entire data model, is constructed in
memory.

Constructing the data tree for large data
models takes a lot of time during
initialisation. Sometimes you might not need
to construct the whole data tree. If you are
going to read just part of a data model, use
FILTER.

The data tree is constructed for the
input and output data models
separately.

If the input and output data models have the
same definition, you can use the same data
tree for both. See the following section on
Data sharing.

Data are read into memory, from disk,
one record at a time, from the input data
file.

Input and output back and forth between
disk and memory is expensive. Bring the
files into memory with INMEMORY = YES.

All records, from first to last, are
processed.

You don't always need to plough through all
records. See STARTKEY.

If there are two or more data models, a
connecting scheme connects identically
named and defined fields between data
models.

For large data models, the connecting
algorithm can take a lot of time during
initialisation. In certain circumstances, you
can turn this off with CONNECT = NO.

In memory, data are copied
automatically from the first data tree to
the second before manipulation.

Sometimes you don't want this automatic
copy before manipulation. If not, use
AUTOCOPY = NO.

If there is a MANIPULATE section,
then data manipulations are carried out
on the output data record while in
memory.

Some tricks in the MANIPULATE section
can speed up the setup, especially for loops.
See EXITFOR and other exiting commands.

Output data are written to the output file
on disk and the process starts anew.

Here again, you can use INMEMORY =
YES.

8.10.2 Skipping to a secondary key value
Secondary keys in Blaise help you to access certain parts of the data file. For
example, you might have defined a secondary key called CompletionStatus with
values:

• Blank. No action on this form yet

• Incomplete. Started but not yet complete

• Complete. Form is ready for further processing

• Read_out. Form was previously read out.

 Chapter 8: Advanced Manipula

Developer's Guide 447

Suppose you have hundreds or thousands of forms in a data file and you want to
read out only the complete forms. Normally, Manipula would churn through all
forms in the data set. You can cause Manipula to skip right to the complete
records and then to stop processing altogether once it reaches records that were
previously read out. To use the secondary key in this way, use local settings with
the input file as follows (toascii3.man):

USES
 BlaiseMeta 'NAMEJOB1'

INPUTFILE
 BlaiseData : BlaiseMeta('NameJob1', BLAISE)
SETTINGS
 KEY = SECONDARY
 STARTKEY = (Complete)

OUTPUTFILE
 AsciiData = BlaiseData('NameJob2.asc', ASCII)

MANIPULATE
 IF BlaiseData.CompletionStatus = Complete THEN
 AsciiData.WRITE
 ELSE
 READY
 ENDIF

The instruction KEY = SECONDARY causes the data file to be processed in the
order of the secondary key CompletionStatus. The STARTKEY = (COMPLETE)
causes Manipula to skip to the first record with that value.

In the MANIPULATE section the key word READY causes Manipula to cease
processing once the condition is not satisfied.

To set up this example, read data into the data model namejob1 with the
Manipula setup frmascii.man. This will read in data where 10 records have
Complete = 1 and 4 records have Complete = blank. When you read out with the
Manipula setup toascii3.man, only 10 records are processed because 4 records
are skipped where the field Complete is blank.

Declaring a number of secondary keys
There is no limit to the number of secondary keys you can declare, but they are
expensive in terms of storage space. If you ever have to rewrite a data set with the
Hospital utility, having a lot of secondary keys will slow the process. We suggest
that you plan the use of secondary keys ahead of time. Three to five well-thought-
out secondary keys will usually do for even the most demanding surveys.

Chapter 8: Advanced Manipula

448 Blaise 4.5

8.10.3 Data sharing
When an INPUTFILE, OUTPUTFILE, UPDATEFILE, or TEMPORARYFILE use the same
data model definition from the USES section, you can use the concept of data
sharing to speed up Manipula initialisation. Normally, Blaise will build a separate
data tree in memory for every file mentioned in the setup. Then, when the main
record is read in, an automatic connection process will copy data from the first
data tree to the other (where there are matching fields). If the data files have the
same structure, you can prevent the system from building two trees, and
connecting data points and copying data. This is done with data sharing. From
the example above:

OUTPUTFILE
 AsciiData = BlaiseData('NameJob2.asc', ASCII)

The phrase Asciidata = BlaiseData says that the file asciidata shares the same
structure as the file blaisedata and that they should share the same data tree in
memory. Thus, you avoid the need for the auto-connection and auto-copy
processes. This speeds up both initialisation and processing.

Cautions with computations
When you have data sharing, there is only one copy of the data in memory. Be
careful with your assumptions about the values of the fields when you make
computations. Once a field has been changed to a different value, then subsequent
computations, such as IF conditions and the like, will be executed with that
changed value, not the original value of that field. This is because the input form
and the output form are in the same location in memory. However, the original
value of the field will still be in the original input file on disk. Compare with
UPDATEFILE above.

8.10.4 Filters
Sometimes you do not need to read a whole Blaise form into memory. For
example, if you want to produce a survey management report from the data model
ncs07, you might need information from the blocks Manage, Ident, and
DateTime. If you want to list all sample numbers with a household’s address, you
need only the blocks Ident and Address. You do not need to bring the rest of the
data model into memory. You can filter what is brought into memory with the
FILTER subsection of the main input file.

 Chapter 8: Advanced Manipula

Developer's Guide 449

The FILTER saves time in two ways. First, it builds only the data tree necessary to
hold the stated blocks. Second, fewer data are manipulated. For example, from
hhlist.man:

INPUTFILE
 InFile : NCS07 ('NCS07', BLAISE)
 FILTER
 Ident
 Address

When you use FILTER you cannot make reference to any other blocks in the
MANIPULATE section, since they are not in memory.

FOR I:= 1 TO 6 DO
 IF InFile2.Member[I].Age <> EMPTY THEN
 {do something}
 ELSE
 EXITFOR
 ENDIF
ENDDO

As soon as InFile2.Member[I].Age is empty, the loop will be exited. Over many
forms, this can save a lot of looping. The efficiency of this method depends on
having a field, such as Age, that is always filled. If the field in the condition is
empty when there are other data in the block or in succeeding blocks, then some
records will be missed.

Other constructs with exiting capability are WHILE-DO, which you can exit with
EXITWHILE, and REPEAT-UNTIL, which can be exited with EXITREPEAT.

8.10.5 TEMPORARYFILE
Using TEMPORARYFILE to hold an intermediate data set can save processing time
if it is small enough to fit in memory. See the beginning of this chapter for more
information on TEMPORARYFILE.

8.10.6 Block computations
Block computations save time over making many individual field-level
assignments. When Manipula can copy a block of data instead of copying all of
the fields of the block individually, it does not have to handle each field's value
separately.

Chapter 8: Advanced Manipula

450 Blaise 4.5

8.10.7 CONNECT = NO
When you have two or more data models in the USES section of a Manipula setup,
Manipula will automatically connect fields from the first data tree in memory to
the second data tree in memory for any matching fields. Sometimes you do not
want this.

If automatic connecting is turned off, you can save time in two ways. First, it
speeds up the initialisation process since the field connections are not made.
Second, without the connect, it is not possible to automatically copy data from
one data model to another, so AUTOCOPY = NO (see the next section).

If you use CONNECT = NO, you have to take care of transferring data from the
input data model to the output data model in the MANIPULATE section. See the
Reference Manual or the on-line help for details. If you know that there are no
links between the input file and the output file, then set CONNECT = NO.

8.10.8 AUTOCOPY = NO
Using AUTOCOPY = NO will still allow Manipula to connect fields, but will not
automatically copy data from one data tree to the next in memory. This does not
save initialisation time, but it does save processing time. As with CONNECT = NO,
any data transfer to the output file must be executed in the MANIPULATE section.
If CONNECT = YES (the default), this can be done in the MANIPULATE section using
COPY.

8.11 Example Manipula Setups

The following table lists the Manipula setup examples used in this chapter. These
files can be found in \Doc\Chapter8 of the Blaise system folder. The files are
listed in alphabetical order.

 Chapter 8: Advanced Manipula

Developer's Guide 451

Figure 8-2: Example Manipula setups
Manipula Setup Description
checkall.man Checks the RULES sections of a data model against forms in a data file

using UPDATEFILE and CHECKRULES.

uphh.man Shows the use of static LINKFIELDS.

one2many.man Reformats a file that has one physical record per logical record into a file
that has several physical records per logical record. Uses block
computations.

many2one.man Reformats a file that has several physical records per logical record into a
file that has one physical record per logical record. Uses GLOBAL
AUXFIELDS, PROCEDURES, PROLOGUE, and block computations.

initial.man Reads in name and address information from a file that has all information
for a Blaise form on one line. Uses EXITFOR.

initial1.man Same as INITIAL except that a command line PARAMETER controls an IF
condition.

initboth.man Reads in name and address information from two files at one time. One file
has address information, the other name information. Uses static
LINKFIELDS.

inithh man Reads in address information only.

initros1.man Uses UPDATEFILE to read name information only into a Blaise data file
already populated with the setup inithh. This setup handles the situation
where all names for one Blaise form are on one line of the input file. Uses
static LINKFIELDS.

addrsout.man Exports just the address block from a Blaise data file using
ASCIIRELATIONAL.

hhlist.man Demonstrates the use of FILTER to read in only some data when making a
report.

initaltr.man Reads in address and name information from a file where one kind of line
holds address information and another holds name information. Uses
ALTERNATIVE, INITRECORD setting, INITRECORD method, and
PROCEDURE.

initros2.man Uses UPDATEFILE to read name information only into a Blaise data file
already populated with the setup inithh. This setup handles the situation
where only one name for a Blaise form is on one line of the input file, and
where it may take several lines to hold all names for a Blaise form. Uses
dynamic LINKFIELDS.

maketest.man Makes a test data set of 1,000 forms from 18 test forms. Uses AUTOREAD
= NO and the REPEAT-UNTIL with the READNEXT instruction.

persnout.man Exports name blocks from a Blaise data file using ASCIIRELATIONAL.

toascii3.man Exports just part of a data file depending on a secondary key. Using the
STARTKEY setting, it skips past part of the data file.

writebat.man Writes a batch file from data recorded in a Blaise instrument. Uses the
TRAILINGSPACES setting.

Chapter 8: Advanced Manipula

452 Blaise 4.5

Developer's Guide 453

9 Cameleon

Cameleon is a Blaise® utility that can translate descriptive information about
Blaise® files into a format that can be used by other software packages. It can also
be used as a diagnostic tool.

This chapter provides some programming examples, but it is only intended as an
overview of Cameleon. To learn Cameleon, you need to study the example
translators shipped with Blaise®, in combination with the reference material. The
Reference Manual has a technical appendix that lists Cameleon reserved words
and outlines syntax.

9.1 Cameleon and Metadata

When you prepare a Blaise data model, you create a file containing information
about the structure and format of the data model (the .bmi file), and when you
enter data you create another file containing that data (the .bdb file). For a data
model called example.bla, the file example.bdb contains the data and the file
example.bmi contains information about the names of fields, the question text
associated with each field, the codes for values accepted as data for each field, the
rules, and other information. The information in the example.bmi file is known
as the metadata for the example.bla data model. Blaise metadata files can be
viewed in the Structure Browser (this is explained in Chapter 2).

You can use Cameleon to create descriptions of a Blaise data model for use by
other software packages. Cameleon uses translator files to interpret the metadata
descriptions in .bmi files to create data descriptions.

Data descriptions can also be diagnostic tools, such as the number of times a
block is called in a data model. Or they can be descriptions of the format of the
data used by other software, such as SPSS or SAS, to interpret ASCII data files
output by Manipula.

The relationship between Cameleon and Manipula is shown in the following
figure:

Chapter 9: Cameleon

454 Blaise 4.5

Figure 9-1: Cameleon and Manipula

Survey data
(*.bdb files)

Meta data
(*.bmi files)

Cameleon
translator

Manipula
program

Data
descriptions Data filesThird-party

software

Program output

9.2 Example Data Model

The following is an example data model activity.bla. The RULES section has
been omitted from this listing:

 Chapter 9: Cameleon

Developer's Guide 455

DATAMODEL Leisure "The Leisure and Sport Survey"
 TYPE
 TActivities = (Sport "Playing sport",
 TV "Watching TV",
 Eating "Eating out",
 Drinking "Going to pub or bar",
 Sleeping,
 Reading)
 TWhySport = (Compete "Competition",
 Relax "Relaxation",
 Health "Health benefits",
 Weight "Weight loss",
 Other)
 TKindOfSport = (Soccer, Cycling, Tennis, Aerobics,
 Bridge, Chess, Other)
 LOCALS
 I : INTEGER
 FIELDS
 FreeTime "What is your favorite leisure-time activity?"
 : SET OF TActivities, DK
 KindOfSport "Which is your major sporting activity?"
 : TKindOfSport
 Hours "On average, how many hours a week
 do you spend at @W^KindOfSport@W?
 @/@/@Y[INTERVIEWER] Accept an approximation." : 0..168, DK
 WhySport "@GWhy do you engage in @W^KindOfSport?": TWhySport
 AnySport "Do you engage in any sport?" : (Yes, No), RF
 WhyNotSport "Why do you not engage in sport?": STRING[20], DK, RF
 AverageHours : 00.00..24.00, EMPTY
 TellWhy "Why do you choose to do sport?" : OPEN
 DateOfBirth "What is your birthday?
 @/@/@Y[INTERVIEWER] Be sensitive." : DATETYPE
 LunchTime "What time do you take lunch?" : TIMETYPE
 NumberOfMembers "Number of members in the household.": 1..10
 Name "Name of household member.": ARRAY [1..10] OF STRING[20]
 RULES
 …
ENDMODEL {Leisure}

If the data model is prepared, then the metadata file activity.bmi is created
and can be viewed in the Structure Browser as shown in the following figure:

Chapter 9: Cameleon

456 Blaise 4.5

Figure 9-2: Structure of the data model activity.bla

Note certain characteristics of this model:

• FreeTime is a set of up to six activities, where the activities are declared in
the TYPE section as the enumerated type TActivities. Each of the individual
possible responses has to be differentiated.

• KindOfSport and WhySport are defined in terms of types declared in the TYPE
section, and both are enumerated types.

• TellWhy is an open field and the length of the response will vary for each
form. Usually, open responses are not input to statistical software.

• Name is an array of 10 elements. Each of the possible 10 individual names
has to be differentiated.

9.3 Cameleon Translators Supplied with Blaise

Several translator files for various statistical packages and database systems are
distributed as part of the Blaise system, together with translator files that give
diagnostic information such as technical descriptions of the data model. If the
supplied translator files do not meet your needs, you can modify the files or create
your own translator files using the Cameleon language. The translators are listed
in the following table:

 Chapter 9: Cameleon

Developer's Guide 457

Figure 9-3: Cameleon translators supplied with Blaise
Target Description of Output File Extension

sas Data description for the statistical package
SAS.

.sas

spss Data description for the statistical package
SPSS.

.sps

spssdot Data description for the statistical package
SPSS indicating the dot as the decimal symbol

.sps

oraclec Setup to create Oracle database tables. .orc

oracled Setup to delete Oracle database tables. .ode

paradox Data description for the Paradox relational
database system, one table for all data (using
the ASCII output file parameter in Manipula).

.man

.sc

paradoxf Description for the Paradox relational database
system, one table per block (using the
ASCIIRELATIONAL output file parameter in
Manipula).

.man

.sc

toascii Produces a Manipula setup to export data to
ASCII format.

.man

asciirel Produces a data model for each relational
block.

.arm

blocstrc Produces a tree of the block structure. .str

questblk Produces a tree of the field structure. .que

dic Produces a list of all questions in the data
model.

.dic

techdesc Produces a technical description of the data
model.

.tcd

papersim Produces a starting point for a paper
questionnaire.

.pap

example Produces a list of all blocks followed by a list of
all fields with their unique names

.exa

9.4 How to Start Cameleon

To start Cameleon, select Tools Cameleon from the Control Centre menu. You
can also open a Cameleon script with a .cif extension in the Control Centre, and
then select Run from the menu or Speedbar. You can also run the program
cameleon.exe without opening a file first.

Chapter 9: Cameleon

458 Blaise 4.5

9.4.1 Running Cameleon
When you start Cameleon, the Cameleon window appears.

Figure 9-4: Cameleon window

• In the Data model box, specify the name of the .bmi file for the data model.

• In the Cameleon script box, specify the name of the Cameleon translator with
a .cif extension.

As an example, for the data model activity.bla, using the SPSS Cameleon
script, we would choose activity.bmi in the Data model box and spss.cif
in the Cameleon script box.

Click the Execute button to run the script.

If you start by opening the Cameleon file in the Control Centre, run Cameleon by
selecting Run Run from the menu, or clicking the Run speed button. The
Cameleon window will appear as shown above, and the name of the Cameleon
file that you have open will already be in the Cameleon script box. You can then
specify the .bmi file and click the Execute button.

! If you have set Cameleon Run parameters and specified a data model .bmi
file, selecting Run will automatically run the script without even clicking
the Execute button in the Cameleon window. If the primary file for a
project is a .cif file, and the project is open, selecting Run will run the
primary (Cameleon) file for the project, not the file in the active window.

When Cameleon has finished running, a confirmation message appears, telling
you the name of the last output file. The following sample is for the Cameleon
script spss.cif run for activity.bmi:

 Chapter 9: Cameleon

Developer's Guide 459

Figure 9-5: Sample Cameleon finished message

9.4.2 Setting Cameleon run parameters
You can set run parameters for Cameleon. These will affect all Cameleon files
run from the Control Centre.

Select Run Parameters from the menu and the Run Parameters dialog box
appears.

Figure 9-6: Run Parameters dialog box for Cameleon

Chapter 9: Cameleon

460 Blaise 4.5

Complete the following items as needed:

• Data model name. Specify the name of the .bmi file for the data model, or
select from previous data models by clicking the down arrow.

• Write-to folder. Specify the name of the folder to which you want to direct
your output.

• Parameter. Specify a value for a parameter, accessible by using the string
function PARAMETER in the .cif file.

• Batch mode. Select to suppress all user questions, which ensures that no
questions need to be answered.

When finished, click the OK button.

9.5 Cameleon Output Samples

We will look at the output from the spss.cif and sas.cif translators. In the
listings that follow, the continuation symbol '_' at the end of a line means that the
next line should follow directly on from the line with the '_'. For example, the two
lines:

This is one line even though it seems _
 to be two lines

are equivalent to the one line:

This is one line even though it seems to be two lines

9.5.1 Output from spss.cif

The following example gives the data description of the Leisure data model
produced for SPSS by the Cameleon translator spss.cif:

 Chapter 9: Cameleon

Developer's Guide 461

TITLE 'Leisure'.
DATA LIST FILE ='Activity.ASC' /
 FreeTim1 1 - 1
 FreeTim2 2 - 2

 FreeTim6 6 - 6
 KindOfSp 7 - 7
 Hours 8 - 10
 WhySport 11 - 11
 AnySport 12 - 12
 WhyNotSp 13 - 32 (A)
 AverageH 33 - 37
 DateOfBi 38 - 45
 LunchTim 46 - 53 (TIME)
 NumberOf 54 - 55
 Name01 56 - 75 (A)
 Name02 76 - 95 (A)

 Name10 236 - 255 (A).
MISSING VALUES
 FreeTim1 (9)
 FreeTim2 (9)

 FreeTim6 (9)
 Hours (999)
 AnySport (8).
COMPUTE
 #DD = TRUNC(DateOfBi / 1000000).
COMPUTE
 #RM = MOD(DateOfBi, 1000000).
COMPUTE
 #MM = TRUNC(#RM / 10000).
COMPUTE
 #YY = MOD(#RM, 10000).
COMPUTE
 DateOfBi = DATE.DMY(#DD, #MM, #YY).
FORMATS
 DateOfBi (EDATE10).
FORMATS
 LunchTim (TIME10.0).
VAR LABELS
 FreeTim1 'What is your favorite_
 leisure-time activity?'
 FreeTim2 'What is your favorite_
 leisure-time activity?'

 FreeTim6 'What is your favorite_
 leisure-time activity?'
 KindOfSp 'Which is your major_
 sporting activity?'
 Hours 'On average, how many_
 hours a week do you spend'
 WhySport '@GWhy do you engage_
 in @W^KindOfSport?'

Chapter 9: Cameleon

462 Blaise 4.5

 AnySport 'Do you engage in any_
 sport?'
 WhyNotSp 'Why do you not engage_
 in sport?'
 AverageH 'AverageHours'
 DateOfBi 'What is your_
 birthday?_ '
 LunchTim 'What time do you take_
 lunch?'
 NumberOf 'Number of members in_
 the household.'
 Name01 'Name of household_
 member.'
 Name02 'Name of household_
 member.'

 Name10 'Name of household_
 member.'.
VALUE LABELS
 FreeTim1
 FreeTim2
 …
 FreeTim6 1 'Playing sport'
 2 'Watching TV'
 3 'Eating out'
 4 'Going to pub or bar'
 5 'Sleeping'
 6 'Reading'/
 WhySport 1 'Competition'
 2 'Relaxation'
 3 'Health benefits'
 4 'Weight loss'
 5 'Other'/
 KindOfSp 1 'Soccer'
 2 'Cycling'
 3 'Tennis'
 4 'Aerobics'
 5 'Bridge'
 6 'Chess'
 7 'Other'/
 AnySport 1 'Yes'
 2 'No'.
ADD VALUE LABELS
 FreeTim1 9 'Don''t Know'
 /FreeTim2 9 'Don''t Know'
 /FreeTim3 9 'Don''t Know'
 /FreeTim4 9 'Don''t Know'
 /FreeTim5 9 'Don''t Know'
 /FreeTim6 9 'Don''t Know'
 /Hours 999 'Don''t Know'
 /AnySport 8 'Refusal'.
SAVE /OUTFILE 'Activity.SAV'.

To use this SPSS setup:

• Export the Blaise data using Manipula as an ASCII file with the name
activity.

 Chapter 9: Cameleon

Developer's Guide 463

• Run this setup (activity.sps) in SPSS with the activity file as the input
text file.

• Use activity.sys as the SPSS system file.

9.5.2 Output from sas.cif

The data description of the leisure data model produced for SAS by the
Cameleon translator sas.cif is given in the following example:

Chapter 9: Cameleon

464 Blaise 4.5

TITLE 'Leisure';

PROC FORMAT;

VALUE TE_1F
 1='Playing sport'
 2='Watching TV'
 3='Eating out'
 4='Going to pub or bar'
 5='Sleeping'
 6='Reading'
;

VALUE TE_2F
 1='Competition'
 2='Relaxation'
 3='Health benefits'
 4='Weight loss'
 5='Other'
;

VALUE TE_3F
 1='Soccer'
 2='Cycling'
 3='Tennis'
 4='Aerobics'
 5='Bridge'
 6='Chess'
 7='Other'
;

VALUE TE_4F
 1='Yes'
 2='No'
;

RUN;

DATA FILE;
INFILE 'Activity.ASC' LRECL = 455;
INPUT
 FreeTim1 1 - 1
 FreeTim2 2 - 2
 …
 FreeTim6 6 - 6
 KindOfSp 7 - 7
 Hours 8 - 10
 WhySport 11 - 11
 AnySport 12 - 12
 WhyNotSp $ 13 - 32
 AverageH 33 - 37
 DateOfBi $ 38 - 45
 LunchTim $ 46 - 53

 Chapter 9: Cameleon

Developer's Guide 465

 NumberOf 54 - 55
 Name01 $ 56 - 75
 Name02 $ 76 - 95
 …
 Name10 $ 436 - 455
;
LABEL
 FreeTim1 = 'What is your favorite leisure-time activ'
 FreeTim2 = 'What is your favorite leisure-time activ'
 …
 FreeTim6 = 'What is your favorite leisure-time activ'
 KindOfSp = 'Which is your major sporting activity?'
 Hours = 'On average, how many hours a week do you'
 WhySport = '@GWhy do you engage in @W^KindOfSport?'
 AnySport = 'Do you engage in any sport?'
 WhyNotSp = 'Why do you not engage in sport?'
 AverageH = 'AverageHours'
 TellWhy = 'Why do you choose to do sport?'
 DateOfBi = 'What is your birthday? @/@/@Y[INTERVIEWE'
 LunchTim = 'What time do you take lunch?'
 NumberOf = 'Number of members in the household.'
 Name01 = 'Name of household member.'
 Name02 = 'Name of household member.'
 …
 Name10 = 'Name of household member.'
;

FORMAT
 FreeTim1 TE_1F.
 FreeTim2 TE_1F.
 …
 FreeTim6 TE_1F.
 KindOfSp TE_3F.
 WhySport TE_2F.
 AnySport TE_4F.
;

RUN;

To use this SAS setup:

• Export the Blaise data as an ASCII file with the name activity.asc.

• Run this setup (activity.sas) in SAS, with the activity.asc file as the
input text file.

9.6 Programming in Cameleon

At times, the data descriptions produced by the standard Cameleon translators
may not be sufficient for your needs. New software may appear, or you may have
project-specific requirements that are not covered by the existing software. In
these cases, you might need to create your own Cameleon translators.

Chapter 9: Cameleon

466 Blaise 4.5

9.6.1 Basic Cameleon programming concepts
When you create a Cameleon translator program, certain basic information is
crucial:

• By default, Cameleon writes all output to the file cameleon.out. However,
you can change the name of that file by assigning another value to the
predefined variable OUTFILE.

• Any text within square brackets [] is a program instruction, and text outside
the brackets is treated as text to be written to the output file. This is a very
important point, and it is crucial to understand this distinction. We will
illustrate this in the example to follow, cameltst.cif.

• A bracket followed by an asterisk [*] denotes a comment and is not part of
the program.

The Reference Manual contains a complete list of Cameleon reserved words and
syntax.

9.6.2 Example program cameltst.cif

For example, consider the following program (cameltst.cif):

[*CAMELTST.CIF]
DATAMODELNAME [*Line 1]
[DATAMODELNAME] [*Line 2]
OUTFILE [*Line 3]
[OUTFILE] [*Line 4]
OUTFILE := 'NEW.OUT' [*Line 5]
[OUTFILE := 'NEW.OUT'] [*Line 6]
METAINFOFILENAME [*Line 7]
[METAINFOFILENAME] [*Line 8]
[COPY(METAINFOFILENAME,1,4)] [* Line 9]
['COPY(METAINFOFILENAME,1,4) = ' + _
 COPY(METAINFOFILENAME,1,4)] [*Line 10]
OUTFILE [*Line 11]
[OUTFILE] [*Line 12]

The program above gives the following output in cameleon.out for data model
leisure, with the accompanying file activity.bmi:

 Chapter 9: Cameleon

Developer's Guide 467

DATAMODELNAME
Leisure
OUTFILE
CAMELEON.OUT
OUTFILE := 'NEW.OUT'

The following output is in new.out:

METAINFOFILENAME
Activity
Acti
COPY(METAINFOFILENAME,1,4) = Acti
OUTFILE
NEW.OUT

The following steps explain how Cameleon executed the lines of the program.
Each item in the following list can be identified in the cameltst.cif file itself
by the line labels [*Line 1], [*Line 2], [*Line 3], and so on:

[*Line 1]: The string DATAMODELNAME is written to the default output file
(cameleon.out) because it is not enclosed in [].

[*Line 2]: The value of the Cameleon data model variable called DATAMODELNAME is
written to the default output file (cameleon.out) because DATAMODELNAME is
enclosed in []. In this case, the value is Leisure.

[*Line 3]: The string OUTFILE is written to the default output file (cameleon.out).

[*Line 4]: The value of the Cameleon output file (cameleon.out) is written to the
default output file.

[*Line 5]: The string OUTFILE := 'NEW.OUT' is written to the default output file.

[*Line 6]: The default output file is redefined to new.out.

[*Line 7]: The string METAINFOFILENAME is written to the output file (new.out).

[*Line 8]: The value of the Cameleon data model variable called METAINFOFILENAME is
written to the output file (new.out). In this case, the value is Activity.

[*Line 9]: The first four characters of the value of the Cameleon data model variable
called METAINFOFILENAME are written to the output file (new.out). In this case, the
value is Acti.

Chapter 9: Cameleon

468 Blaise 4.5

[*Line 10]: The string COPY(METAINFOFILENAME,1,4) = is written to the output file
(new.out), plus the first four characters of the value of the Cameleon data model
variable called METAINFOFILENAME. In this case, the output is
COPY(METAINFOFILENAME,1,4) = ACTI.

[*Line 11]: The string OUTFILE is written to the output file (new.out).

[*Line 12]: The value of the Cameleon output file (new.out) is written to the output file
(new.out).

9.6.3 Example program param.cif
In Section 9.4.2 we saw that one of the options available was a field Parameter,
and in that field it is possible to enter parameters used by the Cameleon translator.
The translator param.cif uses those parameters or command line parameters:

[*PARAM.CIF]
['Data model name = ' + DataModelName]
['Metadata file name = ' + MetaInfoFileName]
['First parameter = ' + Parameter(1)]
['Second parameter = ' + Parameter(2)]

And if we use the same file and data model together with the parameter string
One;two, then the output in cameleon.out is:

Data model name = Leisure
Metadata file name = Activity
First parameter = One
Second parameter = Two

Note that the two parameters were separated by a semicolon (;).

9.6.4 Example program wesvar.cif
WesVar is software for computing estimates and their standard errors when data
are collected using a complex sample. The software was developed by Westat,
and a 30-day trial version is available free of charge from the Westat Web site.
For further information on that software including pricing information, see the
Westat Web site.

The wesvar.cif file contains a Cameleon translator to produce data
descriptions of the data for a Blaise data model, where the data are output in a

 Chapter 9: Cameleon

Developer's Guide 469

rectangular ASCII file by Manipula. The wesvar.cif program is not complex
and helps us understand some basic Cameleon features. Wesvar.cif is
contained in the following examples:

[*WesVar.CIF]
[** Variable declarations for the whole translator file]
[VAR
 FLDUNIQUE : STRING,
 STARTPOSN : STRING,
 FLDWIDTH : STRING,
 NextPosn : REAL]
[** Setting some environment variables]
[INDENT:= TRUE]
[LAYOUT:= TRUE]
[MAXNAMELENGTH := 11]
[NextPosn := 1]
[OUTFILE := COPY(DATAMODELNAME,1,8)+'.DAT']
[** Variable declarations specially for the procedure]
[VAR
 OrigStr : STRING,
 NewStr : STRING,
 OrigLnth : REAL,
 CharToken : STRING,
 AtToken : STRING,
 HasAt : BOOLEAN,
 AtPosn : REAL,
 I : REAL]
[** Procedure checks for @, so set as variable]
[AtToken := '@']

Chapter 9: Cameleon

470 Blaise 4.5

[PROCEDURE StripAt]
 [NewStr := '']
 [HasAt := FALSE]
 [OrigLnth := LENGTH(OrigStr)]
 [** Step through original string]
 [FOR I :=1 TO OrigLnth DO]
 [CharToken := COPY(OrigStr,I,1)]
 [** Check for @]
 [IF CharToken = AtToken THEN]
 [HasAt := TRUE]
 [ELSE]
 [** Check to see if last chracter was @]
 [IF NOT HasAT THEN]
 [** Copy chracter to new string]
 [NewStr := NewStr + CharToken]
 [ENDIF]
 [HasAt := FALSE]
 [ENDIF]
 [ENDDO]
[ENDPROCEDURE]

[** Main program:]
[** Steps through blocks, fields, arrays, and sets]
[BLOCKPROC]
 [FIELDSLOOP]
 [ARRAYLOOP]
 [IF TYPE <> BLOCK THEN]
 [IF TYPE <> OPEN THEN]
 [SETLOOP]
 [FLDUNIQUE := UNIQUENAME]
 [WHILE LENGTH(FLDUNIQUE) < 11 DO]
 [FLDUNIQUE := FLDUNIQUE + ' ']
 [ENDDO]
 [STARTPOSN := STR(NextPosn)]
 [WHILE LENGTH(STARTPOSN) < 5 DO]
 [STARTPOSN := ' ' + STARTPOSN]
 [ENDDO]
 [FLDWIDTH := STR(FIELDLENGTH)]
 [WHILE LENGTH(FLDWIDTH) < 3 DO]
 [FLDWIDTH := ' ' + FLDWIDTH]
 [ENDDO]
 [FLDUNIQUE + ' ' + STARTPOSN + ' '+ _
 FLDWIDTH] [&]
 [OrigStr := FIELDLABEL]
 [StripAt]
 [NextPosn := NextPosn + FIELDLENGTH]
 [' ' + copy(NewStr,1,16)]
 [ENDSETLOOP]
 [ENDIF]
 [ELSE]
 [BLOCKCALL]
 [ENDIF]
 [ENDARRAYLOOP]
 [ENDFIELDSLOOP]
[ENDBLOCKPROC]

 Chapter 9: Cameleon

Developer's Guide 471

Wesvar.cif basic elements
Wesvar.cif has the following basic elements:

• Variable declarations for the main routine ([VAR … NEXTPOSN : REAL]).

• Variable declarations that will be used only by the procedure StripAt. That is,
[VAR … I : REAL].

• Assignment of a value to a constant for this procedure ([ATTOKEN := '@']).

• Definition of a procedure ([PROCEDURE STRIPAT] … [ENDPROCEDURE]) that
strips out the formatting symbols from field descriptions (or question text).
Note that Cameleon procedures do not take parameters and all Cameleon
variables have global scope. In this case, the global input variable is OrigStr
and the global output variable is NewStr. The procedure uses a FOR-DO …
ENDDO loop.

• A main routine that steps through each data field in the data model, collecting
information ([BLOCKPROC] … [STRIPAT] … [ENDBLOCKPROC]).

Wesvar.cif: example output
We will now look at the output from wesvar.cif for data model leisure.

In the case of this output, notice that:

• The names of the WesVarPC variables are the same as those for both SPSS
and SAS (for example, NAME01 … NAME10). These variable names are
generated by the Cameleon variable UNIQUENAME.

• The variable label for WhySport is '@GWhy do you …' for both SPSS and
SAS; in the case of WesVar, the label is Why do you engag. That is, for
WesVar, the formatting symbols @G have been removed from the text. The
procedure StripAt removes the formatting symbols from text after the text is
assigned to the variable OrigStr.

Chapter 9: Cameleon

472 Blaise 4.5

FreeTime1 1 1 What is your fav
FreeTime2 2 1 What is your fav
…
FreeTime6 6 1 What is your fav
KindOfSport 7 1 Which is your ma
Hours 8 3 On average, how
WhySport 11 1 Why do you engag
AnySport 12 1 Do you engage in
WhyNotSport 13 20 Why do you not e
AverageHour 33 5 AverageHours
DateOfBirth 38 8 What is your bir
LunchTime 46 8 What time do you
NumberOfMem 54 2 Number of member
Name01 56 20 Name of househol
Name02 76 20 Name of househol
…
Name10 336 20 Name of househol

9.6.5 Analysing the wesvar.cif translator
In the procedure, each successive character of OrigStr is examined (CharToken)
and compared to @ (AtToken). If the character is not @, then the character is
copied to NewStr. Otherwise, two characters are skipped and not copied to
NewStr.

 [PROCEDURE StripAt]
 [NewStr := '']
 [HasAt := FALSE]
 [OrigLnth := LENGTH(OrigStr)]
 [FOR I :=1 TO OrigLnth DO]
 [CharToken := COPY(OrigStr,I,1)]
 [IF CharToken = AtToken THEN]
 [HasAt := TRUE]
 [ELSE]
 [IF NOT HasAT THEN]
 [NewStr := NewStr + CharToken]
 [ENDIF]
 [HasAt := FALSE]
 [ENDIF]
 [ENDDO]
[ENDPROCEDURE]

In the main part of the translator code, there is a block procedure ([BLOCKPROC]
… [BLOCKCALL] … [ENDBLOCKPROC]), and all instructions within that block
procedure relate to the 'current' block in the data model. What constitutes the
current block is defined by other instructions, but the data model itself is the first
block. Remember that a block contains fields, and some fields may be blocks.

 Chapter 9: Cameleon

Developer's Guide 473

[BLOCKPROC]
 [FIELDSLOOP]
 [ARRAYLOOP]
 [IF TYPE <> BLOCK THEN]
 [IF TYPE <> OPEN THEN]
 [SETLOOP]
 [FLDUNIQUE := UNIQUENAME]
 [WHILE LENGTH(FLDUNIQUE) < 11 DO]
 [FLDUNIQUE := FLDUNIQUE + ' ']
 [ENDDO]
 [STARTPOSN := STR(NextPosn)]
 [WHILE LENGTH(STARTPOSN) < 5 DO]
 [STARTPOSN := ' ' + STARTPOSN]
 [ENDDO]
 [FLDWIDTH := STR(FIELDLENGTH)]
 [WHILE LENGTH(FLDWIDTH) < 3 DO]
 [FLDWIDTH := ' ' + FLDWIDTH]
 [ENDDO]
 [FLDUNIQUE + ' ' + STARTPOSN + ' '+ _
 FLDWIDTH] [&]
 [OrigStr := FIELDLABEL]
 [StripAt]
 [NextPosn := NextPosn + FIELDLENGTH]
 [' ' + copy(NewStr,1,16)]
 [ENDSETLOOP]
 [ENDIF]
 [ELSE]
 [BLOCKCALL]
 [ENDIF]
 [ENDARRAYLOOP]
 [ENDFIELDSLOOP]
[ENDBLOCKPROC]

In the block procedure, there is a loop through all the fields in that block
([FIELDSLOOP] … [ENDFIELDSLOOP]), and if the field itself is a block, then the
block procedure is called again ([IF TYPE <> BLOCK THEN] … [ELSE] [BLOCKCALL]
[ENDIF]). Most of the coding is concerned with formatted output. Note that
everything sent to the output file (in this case, [OUTFILE :=
COPY(DATAMODELNAME,1,8) + '.DAT']) has to be a number or text. If more than
one item is output at the same time (for example, [FLDUNIQUE + ' ' + STARTPOSN + '
' + FLDWIDTH]), each item has be text or a string variable.

9.6.6 Using metadata loops
Cameleon has two conventional iterative looping structures: WHILE…ENDDO and
FOR…ENDO. In addition, Cameleon has metadata loops, the use of which can be
illustrated by the basic structure of the block procedure:

Chapter 9: Cameleon

474 Blaise 4.5

[BLOCKPROC]
 [FIELDSLOOP]
 [ARRAYLOOP]
 [IF TYPE <> BLOCK THEN]
 [IF TYPE <> OPEN THEN]
 [SETLOOP]
 …
 [ENDSETLOOP]
 [ENDIF]
 [ELSE]
 [BLOCKCALL]
 [ENDIF]
 [ENDARRAYLOOP]
 [ENDFIELDSLOOP]
[ENDBLOCKPROC]

That is, there are metadata loops within metadata loops:

• There is a metadata loop through all fields (FIELDSLOOP … ENDFIELDSLOOP).

• For each field there is a metadata loop (ARRAYLOOP … ENDARRAYLOOP)
through all instances of that array (or only once, if the field is not an array).

• If the field is an instance of a block, then move to the ELSE condition for that
check.

• If the field is an instance of an OPEN type of question, then move to the ENDIF
condition for that check.

• For each element of the array for that field there is a metadata loop (SETLOOP
… ENDSETLOOP) through all instances of that set (or only once, if the field is
not a set).

In sas.cif there are further metadata loops:

[BLOCKPROCEDURE]
 [TYPESLOOP]
 [IF (TYPE = BLOCK) AND NOT PREDEFINEDTYPE THEN]
 [BLOCKCALL]
 [ELSEIF (TYPE = ENUMERATED) OR ((TYPE = SET) AND _
 (DEFINEDTYPENAME = '')) THEN]
 []VALUE TE_[ENUMTYPENUMBER]F
 [ANSWERLOOP]
 [IF ANSWERTEXT = '' THEN] [:2][ANSWERCODE]='[ANSWERNAME]'
 [ELSE] [:2] [ANSWERCODE]='[ANSWERTEXT]'
 [ENDIF]
 [ENDANSWERLOOP]
 [];

 [ENDIF]
 [ENDTYPESLOOP]
[ENDBLOCKPROC]

 Chapter 9: Cameleon

Developer's Guide 475

In this case, there are two loops within a block procedure:

• A types loop (TYPESLOOP) that loops through all the types in the block.

• An answers loop (ANSWERLOOP) that loops through all the answer codes for
an enumerated type.

The output for this section is:

VALUE TE_1F
 1='Playing sport'
 2='Watching TV'
 3='Eating out'
 4='Going to pub or bar'
 5='Sleeping'
 6='Reading'
;

VALUE TE_2F
 1='Competition'
 2='Relaxation'
 3='Health benefits'
 4='Weight loss'
 5='Other'
;

VALUE TE_3F
 1='Soccer'
 2='Cycling'
 3='Tennis'
 4='Aerobics'
 5='Bridge'
 6='Chess'
 7='Other'
;

VALUE TE_4F
 1='Yes'
 2='No'
;

Note that VALUE TE_4F was not defined in the TYPE section of the data model, and
in Blaise all enumerated types have a distinct number (ENUMTYPENUMBER)
whether they have been formally defined or are part of a FIELDS declaration.

Chapter 9: Cameleon

476 Blaise 4.5

Developer's Guide 477

10 CATI Call Management System

Blaise® supports Computer Assisted Telephone Interviewing (CATI). Blaise®
CATI is easy to set up and use, is parameter driven, is compatible with Computer
Assisted Personal Interviewing (CAPI), and needs little if any special hardware.

Blaise® uses the power of networked computers to accomplish several things
necessary for an effective CATI survey, including:

• Shared data files

• Joint handling of busy signals, so that the number will be tried again in a few
minutes

• Management of appointments for individual interviewers and groups of
interviewers, so that forms can be routed back to an individual or group
member who established rapport

• Special strategies for handling no-answer or answering machine calls with
time slices. For example, if a call is made during an afternoon and no one is
reached, you might want to call in the evening instead

• Up to the minute survey management

• Tracking and enforcing quotas

• Time zones

• Supervisory intervention

• Reports

Several parties are involved in a CATI survey and each one has a different
perspective on the CATI system.

The interviewer conducts the interview and uses CATI survey management
features such as the dial menu and the appointment dialog box when conducting
the survey in the Data Entry Program (DEP).

The developer includes the correct CATI instructions in the data model, such as
the INHERIT CATI setting, the special telephone, route-back, to whom, and time
zone fields. The developer also sets up the parallel blocks that interviewers will
need to make appointments and record other call results.

Chapter 10: CATI Call Management System

478 Blaise 4.5

The study manager uses the CATI Specification Program to set survey parameters
such as how forms are delivered, valid survey days, and interviewer names.

The CATI supervisor uses the CATI Management Program to monitor calls and
to intervene as needed.

It is important to coordinate all these people so that you can increase the response
rate, implement special sampling plans, and reduce costs by increasing
productivity.

The Comtel example used in this chapter is a person-level instrument about
commuting with known respondents and telephone numbers.

10.1 Blaise CATI Concepts

There are several basic concepts in a Blaise CATI survey. In this section we
discuss those concepts. Chapter 11 provides additional technical details about the
Blaise CATI system and includes a glossary of CATI terminology.

CATI instrument
The first step is to create an instrument that contains the special settings and
blocks needed for a CATI survey. Details on developing data models are in
Chapters 3, 4, and 5. The steps necessary for a CATI model are covered later in
this chapter.

Blaise data file
Before the survey starts you initialise or pre-load a Blaise data file with data. At a
minimum, a telephone number is required, but you can also load other
administrative information, such as name and address, time zones, or previously
collected data.

When a form is delivered to a workstation, the data in that form (because it was
initialised with data) are copied from the server to workstation memory. When the
interviewer completes that form, the data are copied to the server. In this way, the
data file on the server is updated continuously with results from all the
interviewers.

 Chapter 10: CATI Call Management System

Developer's Guide 479

CATI specification
You create a CATI specification file for your survey using the CATI
Specification Program (select Tools CATI Specification from the menu). The
specification file contains parameters or settings that describe when and how a
survey should be conducted, such as the survey period, the days on which
interviews will be held, and the number of interviewers per shift. It also indicates
which treatment must be given to telephone numbers in various situations.

The Blaise data file that you initialised may be very large. Manipulating the entire
file at one time could cause problems with the system’s performance. Blaise
solves this problem by using a daybatch. A daybatch is a file that contains forms
for only those respondents who may be contacted on a specific day in the survey
period.

The daybatch is created before interviewing begins. You influence the
composition of the daybatch through items defined in the CATI Specification
Program, but create it manually or in batch overnight using the CATI
Management Program.

Workstation and interviewer
To carry out the survey, interviewers run the Data Entry Program (DEP). By
default, each time the interviewer asks for a new form, a dial screen appears with
the number to be contacted. The interviewer either conducts the interview or
records a different call outcome, such as making an appointment or recording a
refusal.

Appointments are an important part of the system. Interviewers can make an
appointment at any time.

Dial and dial result
A dial is the process of selecting a form and making it available to the interviewer
to try to get a respondent on the line. In other words a dial is an attempt to contact
the survey subject. After conclusion of the dial, the form acquires a dial result. A
dial result determines what treatment should be given to a form.

The eight high-level dial results supported by Blaise are:

• Response: the questionnaire is complete.

• No answer: no one answered after several rings.

• Busy: a regular busy signal (not a fast busy) is heard.

Chapter 10: CATI Call Management System

480 Blaise 4.5

• Appointment: An appointment is recorded for a later contact.

• Non-response: The respondent refuses to cooperate.

• Answering service: An answering machine or service was reached. The
interviewer may or may not have left a message.

• Disconnected: The phone number was disconnected.

• Others: Other situations can be recorded.

For each dial result, it is possible to include questions in a parallel block that
prompts the interviewer for additional detail. For example, if a refusal is recorded,
it may be firm or mild and this may help determine if the respondent should be
contacted again at a later date. The treatment a form gets depends on the dial
result (see the following section).

Call
A call is a logically related set of dials. This means that a call is made up of one
or more dials depending on the history of the form. Some examples:

• Dial result is Response: One dial and one call.

• Dial results are No answer, No answer, then the form goes to No need today
(because Maximum number of dials = 2). There are 2 dials and 1 call.

• Dial result is No answer and the calling day ends before there is another
opportunity to attempt this form: One dial and one call.

Since dials are subsets of calls, there may be many more dials for a case than the
number of calls. The history file records dial results (all attempts). The CATI
Specification File setting General parameters/Day batch parameters/Maximum
number of calls refers to the number of calls as defined here (not the number of
dials or attempts).

Treatment
A treatment covers the process by which the scheduler determines the appropriate
status code and other items that govern when the form should next be called or
next be eligible for daybatch creation. Treatments have several aspects that can be
controlled by the datamodel developer or through CATI specifications. Thus you
have the ability to determine or influence how each form is handled depending on
its treatment and the history of the form itself. Treatments apply to several non-
concluding dial results.

 Chapter 10: CATI Call Management System

Developer's Guide 481

The CATI system distinguishes a number of non-concluding treatment types:

• A no-answer dial result gets the treatment no-answer.

• A busy dial result gets the treatment busy.

• An appointment dial result gets the treatment appointment.

• An answering service dial result gets the treatment answering service.

The term treatment can be considered very broadly. It may include a parallel
block with additional questions attached to the dial result, the values of
parameters in the specification file, datamodel rules to handle certain situations,
and other actions that determine what to do with each form.

Forms with the dial results response, disconnected, nonresponse, and other are
considered concluded, and therefore no treatment is needed. It is possible to bring
these forms back into the scheduler on a case-by-case basis or en masse for a
class of forms with other Blaise management tools such as Manipula or Maniplus,
but this is beyond the scope of this chapter. For example, a form with an other
dial result may represent a situation where there was a language problem. This
form can be refielded if an interviewer can be found that can speak this language.

Call scheduler
Scheduling is the method by which forms in the daybatch are made available to
be dialled. The part of the program that performs this function is called the
scheduler. The scheduler assesses the priority and the status of the forms in the
daybatch and adjusts them if necessary. It takes into account appointments, busy
signals, and no-answer call backs and selects the proper treatment for
unsuccessful call attempts.

The scheduler works in five-minute intervals. The first interviewer asking for a
new number in an interval causes the system to update the priorities. New
priorities are assigned to active numbers in the daybatch, and this process is
called scheduling. Although the daybatch normally contains the same numbers all
day, only a subset of the numbers is active at any one time, and this subset varies
continuously. The priority assigned to a form may change many times.

The daybatch is updated by the workstation of the interviewer who invokes the
update. An extra workstation is not necessary to run the CATI scheduler.

Chapter 10: CATI Call Management System

482 Blaise 4.5

Statuses in the daybatch and Priorities
The scheduler works by assigning one of the following statuses to forms in the
daybatch:

• Being treated: A dial is currently being performed for this number.

• Busy: The result of the last dial was busy, and the form will be given the busy
treatment.

• No-answer: The result of the last dial was no-answer or answering service,
and the form will be given the no-answer treatment.

• Appointment: An appointment for today has just been made for this form. The
next schedule will determine whether the new status should be active or not-
active.

• No need today: This form should not get another dial in the current daybatch.

• Not-active: The form cannot get a dial at the moment. The form will be given
the status active at a certain time.

• Active: The form is available for a dial.

Statuses are assigned based on the previous dial result, specifications in the CATI
specification file, the date and time, which interviewers and groups are on the
system at the moment, and quota information.

! In the CATI Management Program, under the View Daybatch/Browse
branch the Status/Priority column displays the status of the form unless the
status is Active. If the status is Active then the priority of the form is
displayed in this column. Priorities are Super, Hard-busy, Hard, Medium-
busy, Soft-busy, Default-busy, Medium, Soft, and Default. Priorities are
fully documented in Figure 11-1 of chapter 11.

Time slices
Time slices are a feature of the no-answer treatment, which help you handle no-
answer call backs. If you have dialled a number during a certain time of the day
and continue to get a no-answer response, you might want to try a different time
of the day to dial that number. You can create time slices that divide the survey
day into different time periods. Then, based on settings in the CATI specification
file, the scheduler will keep track of how many dials were made in that time slice
and schedule that form to be called back during a different time slice.

 Chapter 10: CATI Call Management System

Developer's Guide 483

CATI Management Program
A supervisor manages the survey using the CATI Management Program. It is
from within this program that the supervisor monitors progress, browses the
forms in the daybatch, applies treatments to forms, and views active interviewers
and groups.

Counts file
The system creates a file that stores the number of completes, no-answers, and
other outcomes of dial attempts. These counts are shown in the Summary and
Quota branches of the CATI Management Program.

Quota
If there is a quota to fill based on the value of a field in the data model, and then
the counts file keeps track of the number of responses of this value for all
interviewers.

Quotas can be implemented at two levels: at the time of form delivery or in the
RULES section of the data model. You can include a condition on whether a quota
is reached or not. For example, if the quota is reached, then you can reduce
respondent burden by skipping past parts of the questionnaire.

History file
As dial attempts are made, the results of the attempts are kept in the history file.
This file can be inspected within the CATI management program or by using the
bthist.exe program that is in the Blaise system folder.

Log file
The log file keeps track of system-level events such as when a daybatch is
created, when interviewers log on and off, and so on. It is an ASCII file with a
.log extension that can be viewed in any file browser.

10.2 CATI Interviewing

Using the Data Entry Program (DEP) for CATI is very similar to using it for
other data models with a few exceptions. You must use a CATI menu and
optionally, CATI surveys can use a Make Dial screen and the default
appointment-making dialog.

Chapter 10: CATI Call Management System

484 Blaise 4.5

10.2.1 Make Dial screen
By default, when an interviewer requests a form, the optional Make Dial screen is
the first screen the interviewer sees. The dial screen can be disabled by setting the
Skip dial menu in the DEP option on the dial menu dialog in the CATI
specification program. The following sample shows a typical dial screen:

Figure 10-1: Dial screen

The Dial menu and Questionnaire data sections are customisable in the CATI
specification file. The Dial menu section requires the Questionnaire button and
the Questionnaire section requires the phone number field.

! In this example, all 8 dial results are displayed in Dial menu. Another
common configuration is to display only the Questionnaire button and
require the interviewer to get into the instrument before calling the
respondent. This allows the interviewer to follow a scripted contact
procedure.

In the Questionnaire data section, it is common to display any information the
interviewer should know before contacting the respondent, including form notes
from the previous dial attempt.

Dial menu section
In the Dial menu section the Questionnaire radio button is required but the
display of the other seven dial results is optional (they can still be accessed from
within the instrument). Typically if all eight options were displayed, the
interviewer would dial the number, speak to the respondent, and then select an

 Chapter 10: CATI Call Management System

Developer's Guide 485

option from the Dial menu section. If a modem were available to dial, the
interviewer would click the Dial button to dial the number.

To start the interview, select the option that starts the interview. On the example
above, it is Questionnaire, the first option listed. The exact text that appears here
is determined by the CATI specification file. The DEP runs the interview.

If the dial menu contains an Appointment option, you can make an appointment
from the dial screen without starting the questionnaire. You can also make an
appointment from within the questionnaire by selecting the Appointment parallel
block. See the next section for more details on making appointments.

Some of the dial options may have parallel blocks that display when selected. For
example, you might want some additional information if you encounter a
nonresponse during interviewing. When that option is selected, the DEP displays
the appropriate parallel where you can enter the additional information.

Questionnaire data section
In the Questionnaire data section only the phone number display is required.
Here you can display any instrument information, such as form-level interviewer
notes, that can help the next interviewer attempting an interview. You choose
fields to be displayed in this section in the CATI specification file Field selection
branch. The telephone number is the only field that is required to be displayed.
The other fields provide the interviewer with information that might be helpful
when making calls.

You may be able to edit (change) certain fields on the Make Dial screen itself.
This is determined by a setting in the CATI specification file in the Field
selection branch. If a field can be edited, an asterisk * appears in the column next
to the field in the Questionnaire data section. In the example above, the only field
that can be edited is Phone. The * changes to a + after a field value is edited
(changed).

Zoom
To see more information on a specific form, click the Zoom button to access the
Case summary box.

10.2.2 Making appointments
You can make appointments either from the dial screen (if allowed) or from
within the interview. You can only make appointments for valid survey days.

Chapter 10: CATI Call Management System

486 Blaise 4.5

From the dial screen, select the Appointment option. If you are in the interview
and need to stop it and make an appointment, click on the tab for the appointment
parallel block. If there is no appointment tab, select Navigate Sub Forms from
the menu (or select the appropriate shortcut key) and select the Appointment
option from the Parallel Blocks dialog box. The Make Appointment dialog box
appears.

Figure 10-2: Make appointment dialog box showing a
Weekday period appointment

There are several combinations of date and time that you can select, and the
options available for time are dependent on the option selected for the date. The
following table summarises the available combinations:

Figure 10-3: Time and date combinations when making appointments
 No Date Exact Date Period Weekday
No time * *
Day part * * * *
Exact time *

Make your date and time selection as described in the following section, then
click the OK button.

 Chapter 10: CATI Call Management System

Developer's Guide 487

! You can use the mouse or the keyboard keys to move around in the Make
Appointment dialog box. Press the Tab key to move from section to section.
Use the up and down arrows to move around within the calendar or to
select options from boxes. Use the left and right arrow keys to move within
the time boxes.

You can disable Blaise's default appointment dialog in the Parallel blocks setting
of the CATI Specification Program (see the following section).

No specific date
To set an appointment for no date, just select that option. When choosing no date,
the time choice is day part or no time. If you set an appointment for no date and
no time, you create a no preference appointment.

Exact date
To set an appointment for an exact date, a calendar appears in the Date section.
Valid survey days are highlighted on the calendar.

Figure 10-4: Setting an exact date appointment

Select a specific month and day from the boxes. You can also click once in the
calendar, and use the page up and down keys to scroll through the months.

To select a date, double click on the date (or use the space bar to toggle). When
choosing an exact date, you have a time choice of exact time or day part.

Chapter 10: CATI Call Management System

488 Blaise 4.5

Period appointment
To set an appointment for a period, the calendar also appears. Select a range from
the active survey days by double-clicking a begin and end date. When choosing a
period, you have a time choice of day part or no time.

Weekday appointment
When setting an appointment for a weekday, a bar graph of the days of the week
appears. Select one or more days of the week by double-clicking the appropriate
bars. The number of available days for each weekday is at the top of each bar.
When selecting a weekday, you have a time choice of day part or no time.

Figure 10-5: Setting a weekday appointment

Selecting an appointment time
You can select a day part or an exact time in the Time section. For a day part,
select a beginning and ending time for a range; for an exact time, choose a
specific time. The time increments available reflect the appointment interval
setting in the CATI specification file.

Figure 10-6: Setting an appointment time

 Chapter 10: CATI Call Management System

Developer's Guide 489

10.2.3 Using a CATI menu
A CATI menu file is necessary to run a CATI survey because you need to have
certain options available. For example, the menu option Forms Get Telephone
Number is another way to access the dial screen. If this menu option is not made
available in the menu file, then the dial screen won’t be available either.

There are times when you want to have additional methods of accessing forms,
instead of going through the dial screen or the Get Telephone Number menu.
Consider providing Get Telephone Number, Browse, Get, and Exit from the
Forms menu.

Get Telephone Number
The Get Telephone Number option allows interviewers to re-invoke the automatic
delivery of forms after they have used Browse or Get to access a particular case.
When an interviewer first gets into the CATI system, this option is assumed and
the Make Dial screen automatically appears.

Browse
The Browse option allows interviewers to browse through all the forms in the data
file, not just the daybatch. For example, there may be more than one form for
which a respondent has answers and you want one interviewer to handle all of
them in succession.

You can set the Browse option to browse by primary or secondary key. A very
useful secondary key is the telephone number.

Get
The Get option allows the interviewer to request a form by a primary key.

! Using Get or Browse to access a form has no effect on how the dial screen
or the form is handled by Blaise. The system handles the form just as if it
were selected automatically. If the form is not part of the daybatch when
accessed, it is added to the daybatch automatically.

Exit
You should provide a Forms Exit menu option to allow interviewers to quit
CATI. When interviewers go on a break they should exit CATI so that the
treatment time column in the History viewer is not artificially inflated.

Chapter 10: CATI Call Management System

490 Blaise 4.5

Default CATI menu
There is a default CATI menu called catimenu.bwm in the Blaise system folder.
You can use this menu as it is or edit and rename it to suit your needs.
Information on creating and editing menu files can be found in Chapter 6.

10.3 Developing CATI Data Models

In most respects data models for CATI do not differ from data models for other
types of surveys. But because CATI uses a call management function, you have to
include special information in a CATI data model.

At a minimum, you need pre-coded CATI management blocks and a telephone
number field in your data model. Optionally, you usually include other fields or
blocks in the data model to optimise the use of the system.

In this section we will describe what you must do to adapt a data model for a
CATI survey.

10.3.1 INHERIT CATI and TCatiMana
To make a data model suitable for use in a CATI survey, you must include a
special block that contains fields that store management information.

INHERIT CATI
The special block is included with the following setting:

INHERIT CATI

This must be the last statement in the SETTINGS section of the data model,
appearing just before the first FIELDS or INCLUDE statements.

INHERIT CATI does more than include pre-coded blocks. It also signals to Blaise
that the data model will use the CATI functions of Blaise.

TCatiMana block
The included block is called TCatiMana and it contains three sub-blocks:
TAppMana, TCallMana, and TSliceMana.

 Chapter 10: CATI Call Management System

Developer's Guide 491

• TAppMana records information for appointments made by interviewers. This
block has access to the information in the survey definition, such as the valid
survey days. It knows when interviewing will take place and will not accept
appointments that cannot be met.

• TCallMana stores information about the very first call and the last four calls.
A call consists of one or more dials, depending on the dial result as
documented above. Normally the call scheduler sets this information
automatically. However, a custom call result from within the data model can
be recorded in TCallMana by assigning a value to the auxfield CallResult.
The result assigned using the CallResult auxfield overrides the result selected
from the dial screen or the result from a parallel block.

• TSliceMana stores information for up to 32 dials. For each dial the system
stores the weekday and the time of the dial. The dial time is registered in
respondent time. The information will be used to determine which time slice
definitions have to be blocked because enough dials have already been made
during the slice.

A listing of the blocks is shown in the following code. You must not change these
blocks. These are also in the file cati.inc, which is in the Blaise system folder.

Chapter 10: CATI Call Management System

492 Blaise 4.5

{This file contains definitions of the fields that are used to store
data in the form about the CATI process}

 BLOCK TCatiMana "Cati Management";
 SETTINGS
 ATTRIBUTES = NoDK,NoRF

 TYPE
 TWeekDay = (Sunday, Monday, Tuesday, Wednesday,
 Thursday,Friday,Saturday)

 BLOCK TAppMana "Appointment block for CATI";
 FIELDS
 AppointType "When can we call you back ?":
 (NoPreference "no preference",
 CertainDate "appointment for date and time",
 Period "preference for a period",
 DayOfWeek "preference for days of the week")
 DateStart "start date ": DATETYPE
 TimeStart "start time ": TIMETYPE
 DateEnd "end date ": DATETYPE
 TimeEnd "end time ": TIMETYPE
 WeekDays "selected weekdays": SET OF TWeekDay
 WhoMade "who made appoint ": STRING[10]
 ENDBLOCK {TAppMana}

 BLOCK TCallMana "Call management block for CATI"
 TYPE
 TCAllResult = (Completed "Questionnaire/Response",
 NoAnswer "No answer",
 Busy "busy",
 Appointment "Appointment",
 NonResponse "Non-Response",
 AnswerService "Answering service",
 DisConnected "Disconnected",
 Other "No contact (rest)")

 BLOCK TCall

 FIELDS
 WhoMade "who made last dial in call": STRING[10]
 DayNumber "daynumber relative to FirstDay": 1..999
 DialTime "time of last dial in call": TimeType
 NrOfDials "number of dials in call ": 0..9
 DialResult "result of last dial in call ": TCallResult
 ENDBLOCK {TCall}

 FIELDS
 NrOfCall "number of calls ": 1..99
 FirstDay "date first call ": DATETYPE
 RegsCalls "registered calls": ARRAY[1..5] OF TCall
 AUXFIELDS
 CallResult: TCallResult
 ENDBLOCK {TCallMana}

 Chapter 10: CATI Call Management System

Developer's Guide 493

 BLOCK TSliceMana
 BLOCK TDialData
 FIELDS
 WeekDay "Weekday of slice dial" : TWeekDay
 DialTime "Slice dial time" : TIMETYPE
 ENDBLOCK {TDialData}

 FIELDS
 NrOfDials: 1..32
 DialData: ARRAY[1..32] of TDialData
 ENDBLOCK

 FIELDS
 CatiAppoint : TAppMana
 CatiCall : TCallMana
 CatiSlices : TSliceMana
 RULES
 CatiAppoint.Keep
 CatiCall.Keep
 CatiSlices.Keep
 ENDBLOCK {CatiMana}

 FIELDS
 CatiMana: TCatiMana

You can access these fields in other parts of the data model or through Manipula
or Maniplus.

10.3.2 Special CATI fields
A CATI survey requires some extra information to be stored in fields of your data
model. At a minimum, you must include a telephone number field, but you might
also include a route-back field, a time zone field, a time slice field, and one or
more quota fields.

Define these fields as you would any other field in a data model, and then give
them special status in the CATI Specification Program. The values of some of
these fields are not obtained during the interview. You have to fill some of the
fields during the initialisation step and the CATI Call Management System fills
others.

Telephone field
Blaise expects the telephone number to be part of the data model. Therefore, you
must have a field in the data model to store the telephone number. It is best to use
a text field for this, because it usually contains non-numeric characters such as -
or (). Be sure to make the field wide enough to store every possible telephone

Chapter 10: CATI Call Management System

494 Blaise 4.5

number. If you use a modem, make sure the string of numbers can be interpreted
by the modem software and includes all the digits necessary to access an outside
telephone line.

You can use any field name. Later, you must assign a special meaning to this field
in the CATI Specification Program.

Here is an example:

FIELDS
 Phone "Telephone number": STRING[30]

The telephone field must be filled in before you start the field work of your CATI
survey. A convenient way to do this is to use Manipula to import an ASCII file
with telephone numbers, and possibly other administrative information.

Route-back field and the To Whom function
The CATI Call Management System can route forms to a specific interviewer or
group of interviewers by using a route-back field (also referred to as the ToWhom
field or function). To use this option, include a special field for it in your data
model. It should be a text field of sufficient length to store the interviewer or
group identification. Here is an example:

FIELDS
 ToWhom : STRING[9]

The field name is arbitrary. If you do not care to which interviewer group a
telephone number is routed, you do not have to include this field. If you fill the
ToWhom field before starting a survey, you can make sure certain forms are given
to specific interviewers or groups.

After the survey starts, the information can be updated by the CATI system when
an appointment is made. Then the forms can be routed back to the interviewer
who made the appointment or to an interviewer from the same group of
interviewers. This feature is explained later in this chapter.

Routing forms back to interviewers only works in a network environment.
Interviewers are identified by their login name, or alternatively, a registry entry
for the key called BlaiseUser (in the environment subfolder of the
HKEY_CURRENT_USER subfolder, you may have to create the subfolder and
the key). The registry entry overrides the login name.

 Chapter 10: CATI Call Management System

Developer's Guide 495

Time zone field
If your survey will be reaching respondents across time zones, you must have a
field in your data model that contains the identification of the time zone. Time
zones are stored as three-letter codes, so the time zone field must be a string field
of three characters. In the CATI Specification Program, tell the system what the
time differences for the various time zones are. An example of a time zone field
is:

FIELDS
 TimeZone "Time zone": STRING[3]

You can use any field name. The time zone codes must be all uppercase. Time
zone codes normally should be pre-loaded before you start the field work. An
easy way to do this is to load these codes when you load the telephone numbers.
Make sure the same codes are defined in the CATI Specification Program in the
Time Zone settings.

Time slice field
You can divide the survey day into different divisions in order to schedule
default-priority no answer call backs. These divisions are called “time slices,” and
are defined in the CATI specification file. On a given day, the system will record
the time slice a call was made in and schedule the call back for that form for a
different time slice.

You can define several time slice sets. If the forms in your survey will use
different time slice sets, you must include a time slice field in your data model
that contains the identification of the time slice set. Time slice set identifiers are
stored as three-letter codes, so the time slice field must be a string field of three
characters. In the CATI Specification Program, you tell the system what the time
slice set looks like.

An example of a time slice field is:

TimeSlice "Time slice set identifier":STRING[3]

You then provide the time slice information, including which time slice set codes
to use for which forms.

Chapter 10: CATI Call Management System

496 Blaise 4.5

! If all your numbers use the same time slice set, you don’t need to have a
time slice field. The system will use the definition of the first time slice set
by default.

Quota field
In quota sampling, the survey is designed to interview given quotas of particular
groups of people. This requires a special field. Quota sampling might affect
delivery of forms or it might affect how RULES sections within the data model are
handled. For example, it can be used to ensure that sections of the questionnaire
are asked or skipped based on a value of an enumerated field.

A quota field must be an enumerated field type. For example, suppose you had
the field MarStat with enumeration labels (quota groups) Married, Single,
Divorced, Separated, and Widowed.

You then set the specific maximum values for these quota groups : 100 for
Married, 50 for Single, and 25 for Divorced (these values are set in the CATI
specification file). At some point in the interviewing process, the marital status
question is asked and the answer determined. You can then base routing or other
instructions on the quota within the RULES section of the data model. For
example:

IF NOT(QUOTAREACHED) THEN
 EmployerPolicy
 WorkPolicy(Whom, Employer, EmployerPolicy)
ENDIF

The system keeps track of all the responses from the interviewers. It knows when
a quota has been reached and will execute the rules based on the quota. In the
example above, the questions EmployerPolicy and WorkPolicy will be asked
unless this form is the 26th with a value of Divorced, the 51st with a value of
Single, or the 101st with a value of Married.

You can cross two or more fields to make one quota. The values are set in the
CATI Specification Program. For example, you can make a field AgeCategory
with the values UpTo21, From21To40, From41To60, and Over60.

These can be computed from the field Age which appears in the interview. These
quota groups can be crossed with the MarStat quota groups and values of the
crossing are set in the CATI specification file. If no quota is mentioned in a
crossing, then there is no maximum number for the crossing.

 Chapter 10: CATI Call Management System

Developer's Guide 497

10.3.3 Appointment block
Making appointments is an important part of a CATI survey. Appointment
information is stored in the TAppMana block of the data model. If you want the
ability to make appointments using the appointment dialog in the DEP, you must
also include a second appointment block in the data model.

The fields in this block are used in CATI to store information that you want the
interviewers to see in the Questionnaire data section of the dial screen. For
example:

BLOCK BAppoint
 FIELDS
 Remark1 "@Y[INTERVIEWER] Make any general
 appointment remarks." : STRING[40], EMPTY
 Remark2 "@Y[INTERVIEWER] Room for more general
 appointment remarks." : STRING[40], EMPTY
ENDBLOCK

Note that you should not ask for a day and time for an appointment in this block.
This is automatically taken care of by the system.

! You can disable Blaise's default appointment dialog in the Parallel blocks
settings of the CATI Specification Program. If you do this, you must define
fields to record date and time information. See the CATI Specification
section later in this chapter.

In the FIELDS section of your data model, you must introduce a field of the
appointment block type. For example:

FIELDS
 Appoint: BAppoint

You should not include this block field name in the RULES section of the data
model, or do so only under carefully chosen circumstances. You want to ensure
that the questions in the block will not be asked during the normal course of the
interview. If the instrument is to be used in both the CATI and interactive editing
mode, and you want the data editor to see the appointment block without having
to use the menu to access it, then you need to put it on the route in the RULES
section. For example:

Chapter 10: CATI Call Management System

498 Blaise 4.5

ThankYou
 IF (ThankYou=EMPTY) or CADI THEN
 Appoint
 ENDIF

In order to make the appointment block available from the Navigate menu of the
Data Entry Program, you must make the appointment block a parallel block.

In the parallel setting, you can assign an identifying parallel name to the
appointment block field. If this parallel name is Appointment, the system will
assume that this block is to be treated as the appointment block. If you assign an
arbitrary name to the block field, you must use the CATI Specification Program
(Parallel blocks settings) to tell the system that this block field must be executed
in the appointment situation.

10.3.4 Additional blocks
There are a number of other dial results for which you can specify special parallel
blocks. You can include a parallel block for each treatment type. The following
table lists parallel blocks for all possible dial results. The proper treatment for
each block is set in the CATI specification file (described later in this chapter).

Figure 10-7: Parallel block names for dial results
Parallel Block Name Dial Result

NOANSWER There is no answer.

BUSY The line is busy.

APPOINTMENT The interviewer wants to make an
appointment.

NONRESPONSE The interviewer wants to record a
nonresponse.

ANSWERINGSERVICE The line is connected to an answering
device or service.

DISCONNECT The number is disconnected.

OTHERS Other outcomes.

For example, if you want to ask some questions in case of a refusal to co-operate
in the survey, you could include a nonresponse block like the following:

 Chapter 10: CATI Call Management System

Developer's Guide 499

BLOCK BNonResp
 PARAMETERS
 IMPORT Whom : STRING

 FIELDS
 Reason " @Y[INTERVIEWER] Enter the reason for non-
 response for @B^Whom@B." : NonRespStatus
 RULES
 Reason
ENDBLOCK

FIELDS
 NonResp : BNonResp

To attach the nonresponse treatment to the block field NonResp, add the
following statement to the parallel section:

PARALLEL
 Nonresponse = NonResp

Alternatively, if you name the nonresponse block as follows:

FIELDS
 NonResponse : BNonResp

you can state the parallel block as shown:

PARALLEL
 NonResponse

If you do not use either of these naming conventions, you can still give the block
nonresponse treatment in the Parallel blocks settings in the CATI Specification
Program.

10.3.5 Initialise the data file
Before the survey is started, all telephone number fields must be filled. You might
also want to fill other administrative fields, such as names, addresses, time zones,
or time slice set codes. One way to initialise the file with telephone numbers is to
prepare an ASCII file with initialisation information and use Manipula to import
the information into the Blaise data file.

Chapter 10: CATI Call Management System

500 Blaise 4.5

Blaise is especially well suited for conducting surveys from a list of telephone
numbers. The list may come from an administrative source, a sampling frame, or
a third party supplier.

Blaise can handle list-assisted random digit dialling where random numbers are
pre-generated and pre-screened for blocks of households. The way that telephone
numbers are divided between residences, business, government, fax, and cellular
telephone varies tremendously from country to country, and thus is out of the
scope of this volume. However, a third party sampling business may exist and
may be able to supply the list of telephone numbers.

10.4 CATI Specification Program for Study Management

A survey specification consists of a number of parameters describing when and
how a survey should be executed. The parameters for the survey definition are
held in a CATI specification file that is created using the CATI Specification
Program (btspec.exe). The survey specification includes, for example, the
period for the survey, a specification of the days on which interviews will be held,
and the (number of crews of) interviewers. The survey specification also indicates
which treatment must be given to telephone numbers in several situations. For
example, how many times a number must be called back if it is busy or if there is
no answer. You can also select fields to appear on the dial menu and define time
zones and slices. The specification file is saved with a .bts extension. You must
have a specification file before you can run the data model and the CATI
Management Program.

The survey specification file can be protected by a password. Authorised persons
(those who know the password) can change the survey specification, if need be. It
might happen, for instance, that more interviewers are needed on a day or that
interviewing has to start earlier than originally planned. People who do not know
the password are allowed to look at the survey specification but cannot change it.

You can use the CATI specification file in other locations or for other surveys.
This provides yet another way to define specifications for different situations
using the same data model.

Changing the data model does not affect the CATI specification file, unless one
of the fields used in the definition is deleted or renamed. In that case, the survey
definition ignores entries relating to the old field name.

 Chapter 10: CATI Call Management System

Developer's Guide 501

The CATI specification file must be complete before the CATI Call Management
system can be used, but you can change the CATI specification file while
interviewing is occurring. Each time a new number is presented to an interviewer,
the Data Entry Program (DEP) checks whether the specification file has changed,
and if it has, the DEP will reread the specifications from it.

This section describes how to create the specification file and how to set
parameters for it. Once you create this file, you can edit it during the survey.

10.4.1 Create a specification file
To create a specification file, you must first have a data model that has been
prepared. The CATI Specification Program reads information from the data
model’s meta information file (which has a .bmi extension).

Open the Control Centre. Select Tools CATI Specification from the menu and
the CATI Specification window appears without a file. Then select File New
from the menu and open your data model’s meta information file, which has a
.bmi extension.

Chapter 10: CATI Call Management System

502 Blaise 4.5

! You can also open your data model in the Control Centre and then select
Tools CATI Specification. The program will try to open the
specification file with a name that can be determined based on the active
window. If that specification is not found, you will be prompted to create
a specification for the open file. The system checks whether the data
model definition is suited for CATI. The btspec.exe program can also
be run separately outside the Control Centre.

Figure 10-8: CATI Specification Program

The window contains an explorer view to define all aspects of the survey. Select
an item in the left pane and choose the appropriate settings for your survey as
described in the following sections. The views that are available depend on
whether there is a .bmi file and what settings have been set.

Minimum requirements

At minimum, you have to have the following for the specification file to be
considered complete:

• Survey days have to be set.

• The Dial menu if it is not to be skipped must contain at least one entry that
has the treatment questionnaire.

• Field Selection must have at least one field with the function telephone.

 Chapter 10: CATI Call Management System

Developer's Guide 503

Save the specification file
To save your settings, save your file with a .bts extension. You will need this file
to conduct CATI management activities and to run the survey.

Set a password
You can protect all your settings by creating a password. Select File Password
from the menu. You can protect your survey specification from inadvertent
changes by giving it a password. Only supervisors who know the password will
be allowed to change the specification. The password is also asked if you want to
create a day batch. If a password has been entered previously, then the program
asks for it before it can be changed. If the old password has been entered
correctly, a new password can be entered. Then you are asked to retype the new
password to verify it. If the verification fails the new password will not be
accepted.

A password may consist of up to ten characters. If you want to clear a previously
entered password, you must first enter the old password correctly and then enter
an empty string.

If a survey specification has a password, then if something has been changed the
program will ask for it before WRITING the data to a survey specification file. It
does NOT ask for the password before READING a survey specification file. In
this way it is always possible to look at a survey specification, but it cannot be
changed by accident or by unauthorised people.

The program will only ask once for the password. If you have entered the
password correctly once, it will not ask for it again during the same run.

Print the specification file
You can print the parameters from your file. Select File Print from the menu
and the Select topics to print dialog box appears. Select the items you want to
print and then click the Print button.

10.4.2 Survey days
Before you can do anything else, you must define the days of your survey.

Chapter 10: CATI Call Management System

504 Blaise 4.5

Select Survey days.

Figure 10-9: Survey days branch

Select the month and year from the boxes above the calendar. Then select the
exact days for the survey by double-clicking the numbers on the calendar, using
the space bar to toggle, or placing the cursor on a day and clicking the Select
button.

You can select and deselect all available weekdays by double-clicking the
weekday name at the top of a column (such as Mo, Tu, We, and so on).

A day is selected when a highlighted box appears around the number. The start
and end dates of the survey then appear in the Survey section on the right. For
example, the following figure shows all weekdays selected in June 2001.

 Chapter 10: CATI Call Management System

Developer's Guide 505

Figure 10-10: Selected survey days

Continue to set survey days by choosing the appropriate month, year, and days.

! You can clear all old survey days (days before today) by pressing Ctrl-C.
This can be useful if you re-use an old specification file that had a previous
survey period.

10.4.3 Crew parameters
For each active day you can specify the crew size and working hours for a
maximum of five crews. Crew sizes are only used for the purpose of distributing
all-day (no time or time range) soft and medium appointments throughout the
calling day.

Chapter 10: CATI Call Management System

506 Blaise 4.5

To set crew parameters, select Crew parameters.

Figure 10-11: Crew parameters branch

The active days of your survey appear on the left. For each crew you can specify
the number of interviewers and the start and end times. If you do not specify any
day parameters, the CATI Management Program will assume that there is one
crew working from 9:00 am until 9:00 PM.

First, select the survey days from the list on the left. To set the crews for all days,
choose the (Global) option. Global crew definitions become the default for the
days for which you have not defined any specific values.

Then either edit the default settings by clicking the Edit button or add a new crew
by clicking the Insert button. The Insert or Edit Crew Parameters dialog box
appears.

Figure 10-12: Edit Crew Parameters dialog box

 Chapter 10: CATI Call Management System

Developer's Guide 507

Indicate the crew size, start time, and end time. You do not have to specify the
number of interviewers, but you must include start and end times for the crew to
be valid. You can have more interviewers than the number entered.

Click the OK button to return to the Crew parameters dialog. You can also copy,
paste, and delete definitions by clicking the appropriate buttons.

! When appointments are made during interviewing, the system will only
accept appointments that fall within the global start and end times or the
times specified for a particular day. For period appointments and day-of-
the-week appointments, only the global times are taken into account. For
this reason you should define all of the valid dates and times of the survey
and crews right at the start of the survey. This way you avoid appointments
for times when you will not have a crew at work.

10.4.4 General parameters
Set parameters for the daybatch, appointments, and scheduler by selecting the
General parameters branch.

Figure 10-13: General parameters branch

Set daybatch parameters
A daybatch is a file that contains a set of forms for respondents who may be
contacted on a specific day in the survey period. Daybatch parameters influence

Chapter 10: CATI Call Management System

508 Blaise 4.5

the construction of the daybatch and thus how you can manage the survey. They
take effect when the daybatch is created.

Set the following parameters for the daybatch:

• Daybatch size: Specify the maximum number of forms to be included in the
daybatch. It is incremented by hundreds.

• Maximum number of calls: Specify the maximum number of calls that can be
made for a telephone number. If the maximum has been reached, the number
will no longer be included in the daybatch. This setting is ignored for
numbers with a hard appointment or with a preference appointment that is
current. Note that a call may consist of more than one dial.

• Days between no-answer calls: Specify how many days to wait before
including the number again in a daybatch if the last dial result was No-
answer. For numbers with a hard or preference appointment that is current,
this setting is ignored.

• Days between answering machine calls: Specify how many days to wait
before including the number again in a day batch if the last dial result was
answering service. For numbers with a hard or preference appointment that is
current, this setting is ignored.

• Use sort fields: Select to sort the forms in the daybatch based on the fields
selected on the Daybatch sort tab. This controls the order in which forms are
placed in the daybatch.

• Use select fields: Select to include forms in the daybatch based on the values
stored in fields selected on the Daybatch select tab. This controls which
forms are placed in the daybatch.

! Using Select fields with the Include option has the effect of excluding
forms that do not satisfy the inclusion criteria. For example if you include
EST time zone forms, all other time zones would be excluded.

Set appointment parameters
The appointment parameters control the way appointments can be made with a
respondent. Set the following appointment parameters:

• Route back to interviewer: Select to have the contents of the route-back field
updated with the name of the interviewer who made the appointment, thus
routing the form back to that interviewer.

 Chapter 10: CATI Call Management System

Developer's Guide 509

• Route back to group: Select to have the contents of the route-back field
updated with the name of the main group the interviewer belongs to, thus
routing the form to that group.

• Do not change route back: Select to leave the contents of the route-back field
unchanged.

• Appointment interval: Specify the minute intervals for setting appointments.
For the number of minutes, you can choose any multiple of 5 from 5 to 60.
For example, if the appointment interval is 15 minutes, then appointments can
be set in steps of a quarter of an hour.

• Appointment buffer: Specify until how long before the end of the survey day
you want the system to accept appointments. For example, if this is set to 30
minutes and the last crew stops working at 9:00 PM, the system will accept
appointments up to 8:30 PM. This prevents appointments from being made
just before the end of the day when it might be difficult to complete the
interviews before the end of the day.

Set scheduler parameters
The scheduler parameters control the behaviour of the scheduler. These ensure
that numbers are dealt with according to their priorities and that appointments are
met on time.

Set the following scheduler parameters:

• Maximum number of dials: Specify the maximum number of dials that are
allowed within the same call. When there has been no contact after this
number of dials, the number will not be delivered again on the same day.

• Maximum number of busy dials: Specify how many times to redial a number
if it is busy on the first dial and continues to be busy on subsequent attempts.
When the maximum is reached, the number of dials is increased by one and
the scheduler no longer attempts to chase this series of busies.

• Do not allow multiple same day answering machine calls: Check to set the
status of the form to no need today when the dial result is set to answering
machine. When not checked the number will receive the standard no answer
treatment when the dial result is set to answering machine.

For more scheduler parameters, click the More button and the More Scheduler
Parameters dialog box appears.

Chapter 10: CATI Call Management System

510 Blaise 4.5

Figure 10-14: More Scheduler Parameters dialog box

• Interviewer de-activation delay (medium): Specify how long the scheduler has
to reserve a form for a specific interviewer in case of a medium priority
appointment. If this time expires, the form will be given to the interviewer’s
main group. If the interviewer does not belong to a group, the form will be
given to anyone.

• Group de-activation delay (medium): Specify how long the scheduler has to
reserve a form for a specific group of interviewers in case of a medium
priority appointment. If this time expires, the form will be given to any
interviewer.

• Interviewer de-activation delay (hard): Specify how long the scheduler has to
reserve a form for a specific interviewer in case of a hard appointment. If this
time expires, the form will be given to the interviewer’s main group. If the
interviewer does not belong to a group, the form will be given to anyone.

• Group de-activation delay (hard): Specify how long the scheduler has to
reserve a form for a specific group of interviewers in case of a hard
appointment. If this time expires, the form will be given to any interviewer.

• Expire on de-activation delays only: Do not check if you want the default
situation, in which de-activation delays are applied only if the specified
interviewer (in the case of interviewer de-activation delays) or a member
from the specified group (in the case of group de-activation delays) is
currently running the DEP. If you want the de-activation delays to be
honoured irrespective of who is on the system, be sure to enable (check) this
option. For example, if there is one interviewer assigned to the Spanish group
and that person is delayed in getting to work on a particular morning,

 Chapter 10: CATI Call Management System

Developer's Guide 511

appointments assigned to that interviewer or to the Spanish group would
immediately (i.e., without the specified delays) be given to other interviewers
because the target interviewer is not logged in if the option is not enabled. In
this example, with the option unchecked, you would have English-speaking
interviewers suddenly presented with Spanish forms whereas you probably
would want the deactivation delays to govern.

• Minimum time between hard/super no-answer: Specify how long the
scheduler has to wait between two consecutive dials of a number that has a
hard/super appointment.

• Minimum time between 'other' no-answer: Specify how long the scheduler
has to wait between two consecutive dials for a number that does not have a
hard/super appointment.

• Minutes between busy dials: Specify how long the scheduler will wait
between consecutive busy dials. If the maximum number of busy dials is five,
the system will use the first four intervals.

10.4.5 Dial menu
When you define a CATI survey, you may want to create a dial menu. The dial
menu then appears in the DEP window whenever interviewers request a new
form. For each menu item, you can specify the menu text and the dial result to be
attached to that text.

To create the dial menu, click the Dial menu branch.

Figure 10-15: Dial menu branch

Chapter 10: CATI Call Management System

512 Blaise 4.5

The options set here determine what the dial menu looks like during interviewing.

To insert a new option in the menu, click the Insert button. To edit an entry, click
the Edit button. The Insert or Edit Menu Line dialog box appears.

Figure 10-16: Edit Menu Line dialog box

In the Edit Menu Line dialog box, type the text that will appear in the dial menu.
To use a letter as a short-cut key, type an ampersand (&) in front of that letter. If a
shortcut letter occurs more than once, the first option where it occurs will be
activated.

You must select one of the eight possible dial results for each menu line. The dial
result selected on the dial menu will be the dial result associated with the dial
attempt unless overridden by code in the Blaise instrument. If you wish to go
from a menu line directly into the main instrument, you must associate the
questionnaire treatment with the menu line. If you have associated a parallel
block with a treatment (see section 10.4.11), and a menu line is associated with
the same treatment, you will automatically go to the parallel block when selecting
the menu line.

When finished, click the OK button. The following sample shows a completed
Dial menu:

 Chapter 10: CATI Call Management System

Developer's Guide 513

Figure 10-17: Completed dial menu tab

All defined menu items will also appear on the dial menu for the supervisor. If
you have not specified the treatments Appointment and Nonresponse, the
program will automatically insert them in the dial menu for supervisors. The
system will also include the option Call as soon as possible in the dial menu for
supervisors. This allows the supervisor to direct a form to the first available
interviewer.

If you do not wish to use the dial menu, you can disable this screen by enabling
(checking) Skip dial menu in DEP option. When enabled the dial screen will not
be displayed but a message box will be displayed in which the interviewer has to
confirm that the next form should be delivered.

You can disable the dial confirmation message by enabling (checking) the Skip
confirmation message box. When enabled there will be no confirmation message
box when the OK button in the dial menu dialog in the DEP is clicked.

10.4.6 Field selection
Field selection serves two purposes in your CATI survey. First, you can select the
fields that you want displayed on the dial screen for interviewers, shown in the
Call Management overview and/or added to the history file. For this you might
select fields that provide information about the form, such as telephone number,
address, or time zone.

Second, when you select fields you also tell the system which fields in your data
model to use for the following functions:

Chapter 10: CATI Call Management System

514 Blaise 4.5

• Telephone numbers (telephone field)

• Routeback information (ToWhom field)

• Time zones

• Quota criteria

• Time slices

To select fields, select Field Selection.

Figure 10-18: Field selection branch

Click the Insert button. A dialog box with a tree diagram of the data model
appears. This is the structure of your data model, similar to that seen in the
Structure Browser.

 Chapter 10: CATI Call Management System

Developer's Guide 515

Figure 10-19: Data model structure when selecting fields

Select fields from the tree by double-clicking in the boxes next to them (or use the
space bar to toggle). Then click the OK button to return to the Field selection tab.
The fields then appear in the Field column.

Next click on a field and click the Edit button. The Edit Field Function dialog
box appears.

Figure 10-20: Edit Field Function dialog box

Here you decide where the field will display, specify if the field can be edited,
and assign the appropriate function to it.

Select the functions and options as described in the following bullets:

• None: The field has no special function. This is the default.

• Telephone: The field represents a telephone number. At least one field in the
selection must have this function.

Chapter 10: CATI Call Management System

516 Blaise 4.5

• To whom: The field contains routeback information. This must be a string
field.

• Time zone: The field contains the time zone identification needed for time
zone correction. This must be a three-character string field.

• Quota: The field is used as a basis for quota for parts of the data model. You
can route to or route past certain parts of the data model based on the number
of responses from all of the interviewers for the quota field. Only enumerated
fields can be used as quota fields. You can have more than one quota field.

• Time slice: The field contains the time slice set identifier. This must be a
three-character string field.

• Show in overview: Check to show the field in the overview when browsing
forms in the CATI Management Program.

• Show in dial screen: Check to show the field on the dial screen.

• Edit allowed: Check to allow interviewers and supervisors to edit the contents
of the field on the dial screen. Since the new value will be stored in the Blaise
data file, this option should be used with care. The telephone number is a
typical field for which you might use this option. String, enumerated, integer
and real fields that are not key fields can be edited.

• Add to history file. Check to add the value of the current field to the records
written to the history file. The fields will be written in the order as they
appear in the fields selection list. Be aware that changing the order in the field
selection list influences the order of the fields in the history file.

Click the OK button to return to the Field selection dialog.

Click the arrows to move the field up and down in the list to affect the order in
which the fields appear on the dial screen.

! The telephone number field will always appear first on the dial screen,
regardless of where you place it on the Field Selection dialog.

You can scroll to the right and see the column headings Dial, List, Edit, and
History with a Yes/No under each heading. A Yes under Dial means that the field
will appear on the dial screen. A Yes under List means the field will appear in the
CATI Management program data listing dialogs at the forms branch. A Yes under
Edit means that the field can be edited and Yes under History means that the field
will appear in the ASCII history file.

 Chapter 10: CATI Call Management System

Developer's Guide 517

10.4.7 Interviewers and Groups
You can specify the interviewers who will be working for a survey. You can also
create groups to help categorise the interviewers by certain criteria, such as
different languages or levels of interviewing difficulty. Groups can also be used
for routing back forms or to divide the daybatch into a number of sub-batches.
You can create any number of groups and interviewers and assign interviewers to
more than one group. If an interviewer belongs to one or more groups, you must
specify a main group for the interviewer.

The names specified for the interviewers have to be identical (ignoring case) to
the names that can be determined by the system for an interviewer. The system
determines the name by referencing Windows® registry setting
HKEY_CURRENT_USER\Environment\BlaiseUser or, if no environment setting
is available, the login name.

You can add interviewers and groups individually, or you can create an ASCII
file and load it into the CATI Specification Program.

Add interviewers by loading a file
To add interviewers and groups by loading a file, first create a text file that lists
each interviewer’s name. You can use any text editor. Interviewer names must be
unique. Enclose each name in quotation marks.

To specify groups for the interviewer, follow the interviewer's name with each
group to which the interviewer is to be assigned, enclosing each group name in
quotation marks and separating the name and group names with commas. The
following figure shows a sample of such a file in the Blaise text editor:

Chapter 10: CATI Call Management System

518 Blaise 4.5

Figure 10-21: Sample file to load interviewers and groups

In this sample, the interviewers are assigned to the groups Difficult, General, or
Spanish. The first group name to appear directly after the name will be that
interviewer’s main group. For example, Paco is assigned to two groups, but the
Spanish group is his main group. Group names and interviewer names must all be
different.

Save the file as an ASCII text file in the same folder as the data model and
specification file. The file name must match the survey name exactly, but have
the extension .igl.

Then open the CATI Specification Program and select the Users/Interviewers
branch.

 Chapter 10: CATI Call Management System

Developer's Guide 519

Figure 10-22: Interviewers settings

Click the Load button and the interviewer list appears in the box, as shown in the
following figure:

Figure 10-23: Interviewer list loaded

Click the Store button to save the list in the specification file.

The groups should also be assigned to the interviewers. Check this by selecting
the Groups tab. You will see that the group names are listed. The following figure
shows the Groups tab for our example:

Chapter 10: CATI Call Management System

520 Blaise 4.5

Figure 10-24: Groups settings

Edit interviewers or groups
To edit a name or its group assignment, select the name and then click the Edit
button. The Edit dialog box appears for either the interviewer or the group.

Figure 10-25: Edit interviewer dialog box

Here you can edit the interviewer or group name, change the group assignments,
or change the main group. Click the OK button to return to the Interviewers
settings.

 Chapter 10: CATI Call Management System

Developer's Guide 521

Add interviewers or groups individually
To add interviewers or groups individually, first select either the
Users/Interviewers or Users/Groups branch. Then click the Insert button and the
Insert interviewer or Insert group dialog box appears.

Figure 10-26: Insert interviewer dialog box

Type the name of the interviewer or group. If you are adding several entries, click
the Apply button and continue adding. When you have typed your final name,
click the OK button. You can edit the entries as described above.

Example: Groups mutually exclusive
You might have some interviewers you do not want handling default interviews if
there are enough difficult ones to keep them busy. In this case, declare only the
groups Difficult for those interviewers. They will not get any default interviews
unless a hard or medium appointment has been made for a default form and the
relevant de-activation delays have expired (or are not applicable because there are
no other interviewers on the system and Expire on de-activation delays only has
not been enabled).

Example: Groups not mutually exclusive
You can have two interviewers assigned to both the Difficult and Easy groups
with the first interviewer having the Difficult group as his main group and the
second interviewer having the Easy group as his main group. When the first
interviewer requests a case if both difficult and easy cases with the same priority
are available, a difficult case will be delivered to him because the scheduler finds
such cases more suitable for him. The scheduler would find easy cases more
suitable for the second interviewer in similar circumstances.

Example: Deliver forms to a specific interviewer
If you are using groups but want a specific interviewer to handle a set of forms,
then you can put her in her own group.

Chapter 10: CATI Call Management System

522 Blaise 4.5

10.4.8 Time zones
Time zones define the time differences between the interviewer’s location and the
respondent’s location.

To define time zones, select the Time zones branch.

Figure 10-27: Time zones settings

To create a new time zone, click the Insert button. The Insert Time Zone dialog
box appears.

Figure 10-28: Insert time zone dialog box

In the Name and Code boxes, specify a name and a three-letter code. The code
used here must be put in the Time zone field of the data model.

In the Time difference box, specify a time difference, or offset from the
interviewer’s time, for each time zone. Time zone differences can be specified in

 Chapter 10: CATI Call Management System

Developer's Guide 523

15-minute increments. Time zones in the east are given negative offsets while
time zones to the west are given positive offsets. For example in the United
States, a call centre operating in the Central time zone (CST) would have a
negative offset of –60 for forms in the Eastern time zone (EST).

! All offsets must be adjusted if the time of the interviewer’s location
changes. For example if a 2nd call centre operates from a different time
zone the 2nd call centre requires its own offsets.

Click the OK button when you are finished to return to the Time zone settings.

Set time limits by adjusting the Do not call before and the Do not call after times
on the tab. The time specified is the same for all time zones and for the local time
zone. During interviewing, the call scheduler checks whether the respondent's
time lies between these specified times. Except in the case of hard or super
appointment, the scheduler does not deliver a form if the respondent's time does
not lie between the two specified times.

10.4.9 Time slices
Time slices allow you to spread the call backs for no-answer and answering
machine dials when there is no pending appointment over different parts of the
survey day or week. For example, if you receive a default-priority no-answer
during a weekday, you might want the next try to be an evening or weekend.

When you define time slices, the system keeps track of what time a number was
called, and will dial the number in a different time slice the next time it becomes
active. Time slice definitions are used only for forms that have default status.

You can define one or more slice sets. A time slice set is a group of slice
definitions that belong together. If you use more than one set, you must first
define a time slice field in your data model (see the CATI Data Model section in
this chapter). If a slice field has been defined, the time slice mechanism will only
be used if that field contains a valid slice set code. If no slice field has been
defined, the first slice set will be used.

Define time slice
To define a time slice set, select the Time slices branch.

Chapter 10: CATI Call Management System

524 Blaise 4.5

Figure 10–29: Time slices settings

Click the first Insert button (in the Time slice sets box) and the Insert Time Slice
Set dialog box appears.

Figure 10-30: Insert Time Slice Set dialog box

• Specify a name for the time slice.

• Specify a three-character code for the time slice set. The set codes must be
unique.

• Select the Allow slices to be tried on same day if you want to allow the
scheduler to deliver a form in different time slices during one day.

Click the OK button to return to the Time slices tab.

Next, define the time slices for the time slice set. Click the Insert button in the
Time slice definitions box. The Edit Time Slice Definition dialog box appears.

 Chapter 10: CATI Call Management System

Developer's Guide 525

Figure 10-31: Edit Time Slice Definition dialog box

• Select the days for the time slice. You can select more than one day.

• Select the start and end times for the time slice.

• Specify the maximum number of dials allowed in that time slice.

All time slices for a set must be mutually exclusive. Click the OK button to return
the Time slices settings.

10.4.10 Quota control
You can designate fields to act as quotas and thus affect the delivery of forms. As
soon as the quota for a certain stratum is reached, forms in the daybatch that
belong to that stratum won’t be delivered to an interviewer. Forms that belong to
a stratum that is already reached will not be included in future daybatches.

There are two ways quotas can be handled. If you know which stratum a form
belongs to, the delivery of forms for that stratum stops as soon as the quota for
that stratum is reached. It is also possible that the stratum the form belongs to will
be determined during the interview. In this case, you can check using the Boolean
function QUOTAREACHED, and then act accordingly to affect the delivery of
forms.

Only enumerated fields can be used as quota fields. You can set quota values for
each label of the quota fields. Quota control is a two-part process:

Chapter 10: CATI Call Management System

526 Blaise 4.5

• Designate fields for quota in the Field selection settings (see the Field
Selection section above).

• Specify the quota values in the Quota control settings as described in this
section.

You can either set quotas manually or load an ASCII text file that you prepare
first.

To set quota values, select the Quota control branch. The labels for each field
chosen for quotas are listed.

Figure 10-32: Quota control settings

Set quota values manually
To set the counts manually, simply type the values for each quota category in the
Count column. You can edit items by clicking the Edit button.

Load quotas in a file
To load quota values from a file, prepare an ASCII text file that lists the strata and
the quota values. The following figure shows a sample file you might use for the
quota specification shown in Figure 10-32 above.

 Chapter 10: CATI Call Management System

Developer's Guide 527

Figure 10-33: Sample file to load quota values

In this example, there are crossings that produce eight cells: four possible answers
for AgeCategory and two possible answers for Job. In the first line of the file,
(1,1,200), the first number (1) is the value of the first possible answer for the first
field; the second number (1) is the value of the first possible answer for the
second field; and the third number (200) is the quota value. In the next line,
(1,2,200), 1 is the value of the first possible answer for the first field, 2 is the
value of the second possible answer for the second field, and 200 is the quota
value.

Save the file as an ASCII file in the same folder as the data model and
specification file. The file name must match the data model name exactly, but
have the extension .qcl.

On the Quota control dialog, click the Load button and the quota counts appear in
the Count column as shown in the following figure:

Chapter 10: CATI Call Management System

528 Blaise 4.5

Figure 10-34: Quota specification with counts

Store the quota values
If you want to save the current quota settings in an ASCII file, click the Store
button. The file will be saved, taking the name of the specification file and a
.qcl extension.

This is useful if you have a large number of strata and you need to change one of
the enumerated variables that is used to define the quota. For example, you might
need to add another category. If this occurs, you can’t use the current quota
definition and you will have to re-enter the values for all the strata. If you have a
stored ASCII file, however, you can reload the previously saved quota values. All
cells that were previously set will still have the stored value. All new cells will
receive no value. Then you only need to enter a value for the new cells.

10.4.11 Parallel blocks
You can select parallel blocks that are in your data model and apply treatments to
them through the CATI Specification Program.

Select the Parallel blocks branch. The parallel blocks and their treatments are
listed.

 Chapter 10: CATI Call Management System

Developer's Guide 529

Figure 10-35: Parallel blocks settings

Click the Insert button and the Edit parallel block treatment dialog box appears as
shown in the following figure. Select the appropriate treatment.

Figure 10-36: Edit parallel block treatment dialog box

If you set the treatment Questionnaire for a parallel block, you indicate that that
parallel should be ignored by the CATI management system. The interview does
not end as soon as the end of such a parallel block is reached.

Click the OK button to return to the Parallel blocks settings.

If you want to disable the Blaise appointment dialog box in the DEP, select the
Disable appointment dialog in the DEP box. You might do this if you want to use
your own appointment mechanism, either called by a DLL or programmed into
your data model, instead of the default appointment dialog. You might do this to

Chapter 10: CATI Call Management System

530 Blaise 4.5

constrain appointment dates individually for each respondent or to give a scripted
appointment wording to interviewers, which cannot be done in the default
appointment dialog.

If you disable the default appointment dialog, you must still have an appointment
block in your data model to record the dial result as appointment. But you must
also impute the appropriate fields in the CATI management block that would
normally be filled by the default appointment dialog. The call scheduler will then
use the data to schedule and deliver forms.

10.4.12 Daybatch select
You can influence which forms are selected for the daybatch. You might do this if
you want to override the daybatch selection that Blaise does automatically. For
example, this may be appropriate if there are forms that the supervisor should
handle, or if parts of the survey population are better targeted now than at other
times. Often these fields will be those which were initialised with data before the
survey began. You could also fill these fields with a Manipula program during the
survey period, or use fields for which information was collected during the
survey.

Select the Daybatch select branch as shown in the following figure:

Figure 10-37: Daybatch select settings

Click the Insert button and the tree diagram of the data model appears. Select a
field or fields and then click the OK button. The selected fields appear on the
Daybatch select dialog.

 Chapter 10: CATI Call Management System

Developer's Guide 531

Click the Edit button and the Edit dialog box appears.

Figure 10-38: Edit dialog box for daybatch select

In the Values box, specify the values for the field on which the selection will be
based. For integers, use the double dot notation to state a range, and separate
entries with a comma. For example:

Figure 10-39: Value box for integers

For string fields, specify values in single quotes and separate entries with a
comma. For example:

Chapter 10: CATI Call Management System

532 Blaise 4.5

Figure 10-40: Value box for string fields

Click the Include or Exclude button to include or exclude the form based on the
field value.

When finished, click the OK button.

Move the entries up or down the list by clicking the red arrow buttons.

! In order to have your criteria applied, make sure the Use select fields option
is checked in the General parameters settings.

! Using Select fields with the Include option has the effect of excluding forms
that do not satisfy the inclusion criteria. For example if you include EST time
zone forms, all other time zones would be excluded.

When selecting a form in the DEP (with the get or browse) during CATI mode,
the system can check the daybatch select fields to find out if the form may be
added to the daybatch.

Check Apply select fields also during get mode in the DEP if you want to use the
select fields also in the data entry program. When selecting a form through get or
browse forms, the system will check the value of the daybatch select fields to
determine if the form could be placed in the daybatch. If yes, access to the form is
allowed in the DEP. If no, a message is displayed to the interviewer and access to
the form is not allowed.

Check Apply select fields also after the dial in the DEP if you want to make sure
that forms that are handled by the DEP and are not currently part of the daybatch,
will not be added by the DEP to the daybatch when the select field indicate that

 Chapter 10: CATI Call Management System

Developer's Guide 533

the forms should not be included in the daybatch. If Apply select fields also
during get mode in the DEP is not checked, by using get or browse forms you are
able to run the DEP on forms that, based on the values in their daybatch select
fields, could not be placed in the daybatch. However, once the DEP is run on
these forms, they are routinely added to the daybatch unless Apply select fields
also after the dial in the DEP is checked.

10.4.13 Daybatch sort
You can influence the way forms are sorted in the daybatch, thus causing certain
forms that would otherwise have equal priority to be worked on first. If you want
to concentrate on some forms before others, you can place them at the beginning
of the daybatch where they will be called first.

You do this by selecting fields and a sorting order for the fields. You can select
more than one field, but usually you only need one or a few. As with the
Daybatch\Daybatch select, you will usually select fields that already have values,
either from initialisation, through a Manipula program, or from interviewing.

The procedure for sorting the daybatch is similar to that for selecting the
daybatch. Select the Daybatch\Daybatch sort branch and click the Insert button.
Select fields from the tree diagram and click the OK button. Select the field in the
list and click the Edit button. Choose Ascending or Descending sort order.

The daybatch will sort and deliver the forms according to the fields and their sort
order.

! In order to have your criteria applied, make sure the Use sort fields option
is checked in the General parameters settings.

10.5 CATI Management Program for the Supervisor

A supervisor manages the survey using the CATI Management Program. This
program is used before each survey day begins and during the survey itself. You
create a daybatch, which determines which forms will be worked on that day.
You can view just the forms in the daybatch, view and browse all forms, and see
details on a specific form. You can view specific forms as well as apply a specific
treatment to a form. You can overrule the scheduling system, change priorities,

Chapter 10: CATI Call Management System

534 Blaise 4.5

and assign forms to a specific interviewer or group. You can also review a history
file and a log file.

Starting the CATI Management Program
To start the management program from the Control Centre, select Tools CATI
Management from the menu. The CATI Management window appears.

Open a CATI specification file with a .bts extension, in this example
Comtel.bts. The following sample shows the comtel.bts file in the CATI
Management window.

Figure 10-41: CATI Management Program

The functions are in the tree on the left and the forms of the survey are on the
panel on the right. The fields you see here are those selected as Show in overview
in the Field selection settings in the CATI Specification Program.

Select functions by either clicking on the tree or selecting menu options. The
following sections describe the capabilities.

You can open more than one specification file at a time in order to monitor
several surveys at once. When two specification files are open, you will see the
name of both files on the left, with tree options for both.

 Chapter 10: CATI Call Management System

Developer's Guide 535

Figure 10-42: CATI Management Program with two surveys

10.5.1 Create daybatch
A daybatch is a selection of forms from the entire Blaise data file that will be
worked on that day. Since the CATI system cannot work without a daybatch, you
have to create a daybatch for each active day in the survey period. Since you can
have only one daybatch at a time, you cannot create several daybatches in
advance. You would not want to do this anyway, since each time a daybatch is
created, the system accounts for appointments made up to that day and other call
history. A daybatch is valid only on the day for which it is created. (Note that it is
always possible to create a daybatch for the next calling day, something you
might want to do at the end of a survey day.)

The daybatch is a binary file that only the Blaise system can read. However, when
generating the daybatch file, another file is created containing the ASCII
representation of the daybatch. This file has the .tdb extension and is overwritten
each time a daybatch is created, or each time you access the View
Daybatch/Browse branch of the management program. In this example the ASCII
daybatch file is Comtel.tdb. It is the Comtel.tdb file that is viewed in the View
Daybatch/Browse data listing dialog.

To create a daybatch, select Management Create Daybatch from the menu.
The Create Day Batch dialog box appears with the next available survey date
displayed in the box:

Chapter 10: CATI Call Management System

536 Blaise 4.5

Figure 10-43: Create Day Batch dialog box

Click the OK button. The system creates the daybatch and, when finished, a
dialog box appears with the results of the daybatch.

Figure 10-44: Create Day Batch Results

This box shows how many soft, medium, and hard appointments are set for the
current day.

! You can automate the process of creating daybatches by selecting the
option Auto create daybatch in the Environment options of the CATI
Management Program. This will create the daybatch automatically when
the specification file is opened and no valid daybatch exists for the current
day.

View Daybatch branches
There are three branches in this part of the CATI Management tool. They are
View Daybatch, View Daybatch/Appointments, and View Daybatch/Browse. The
information in the first two branches is based directly on the binary daybatch file
and is automatically updated. The information in View Daybatch/Browse is based
on the ASCII version of the daybatch file. This latter file will be updated every
time you press <Shift-F5> while having the having the focus on the viewer. It
will also be updated if you physically leave the View Daybatch/Browse branch
and re-enter it. For all three branches, only daybatch forms are represented. In
this example there are 1000 forms in the daybatch out of 4061 in the Blaise data
set.

 Chapter 10: CATI Call Management System

Developer's Guide 537

View Daybatch
Once it is created, you can view a summary of the daybatch at any time to see the
status of the interviewing. Because the information is refreshed automatically,
this option provides a real-time monitor for the operation of the CATI system.

Open the CATI Management tool, then click on the View Daybatch branch of the
tree. The daybatch appears on the right panel.

Figure 10-45: View daybatch

The panel shows two views: first by status, then by priority. There is one column
for each crew shift listed in the CATI Specification file.

To view more details about a group, double-click the cell or click the cell once
and click the Zoom speed button. The Case summary box appears:

Chapter 10: CATI Call Management System

538 Blaise 4.5

Figure 10-46: Case summary box

The screen is divided into three sections: case information, appointment
information, and call information.

• The case information lists the value of the primary key (if there is no primary
key, an internal key is shown between brackets); the telephone number; the
time interval in which the number will be active in the daybatch; the group to
whom the form should be routed (if the de-activation time has expired, the
text Expired appears); the interviewer to whom the number will be routed (if
the de-activation time has expired, the text Expired appears); and the time
difference from the interviewer’s time.

• The appointment information lists the type of appointment, the time for which
the appointment has been made, and who made the appointment.

• The call information lists the interviewer identification, the date and time of
the last dial, the number of dials, and the result of the last dial for the very
first and the last four calls.

The times listed refer to the interviewer’s time, not the respondent’s time.

Click the red arrows to scroll through the forms.

View more information by clicking the More button, or field selection
information by clicking the Data button. The following figures show the More
info and Field selection data dialog boxes:

 Chapter 10: CATI Call Management System

Developer's Guide 539

Figure 10-47: More info dialog box

Figure 10-48: Field selection data dialog box

! The Case summary, More info, and Field selection data dialog boxes can
be displayed wherever the Zoom function is available in the CATI
Management System. They provide an excellent source of information on
the survey forms.

View appointments
You can view all appointments for the current day by clicking the Appointments
branch.

Chapter 10: CATI Call Management System

540 Blaise 4.5

Figure 10-49: View appointments

The appointments are shown in a graph, with the hours across the bottom and the
number of appointments on the left. A hard appointment for 10:45 AM is
included in the 10-11 interval, while a medium appointment for 8:30 AM to 11:30
AM is included in the 8-9 interval. You can see the exact time or the starting time
of all the appointment within an interval by right clicking on the interval.

Select to see soft, medium, or hard appointments by checking the boxes. To see
appointment details, right -click one of the coloured bars and the Appointment
details box appears:

Figure 10-50: Appointment details

In this example you can see the total number of hard appointments that are
scheduled for the 1500-hour appointment interval. You can see the Case
Summary box (documented above) for the forms associated with any bar by

 Chapter 10: CATI Call Management System

Developer's Guide 541

selecting the bar with the mouse and using the Management/Zoom choice in the
menu.

Schedule the daybatch
You can update the daybatch manually, causing it to schedule immediately. You
might do this to see an update of the survey process immediately, instead of
waiting for the five minute interval to end.

To do this, first click the View Day batch option on the tree. Then select
Management Schedule from the menu. A dialog box appears for you to
confirm the schedule.

Browse the daybatch
You can browse forms in the daybatch as well. Click the Browse branch of the
tree, and the forms appear on the right. An overview of the priority of the
telephone numbers in the daybatch appears:

Figure 10-51: Browse the daybatch

Use the scroll bars to view all columns. The term default is used in the
Status/Priority column to indicate that a form is active and hence available for a
dial.

Activate non-actives
You can activate non-active forms, except those that have hard appointments or
for which busies are being chased. First click the View Day batch branch of the
tree, then select Management Activate from the menu. A dialog box appears for

Chapter 10: CATI Call Management System

542 Blaise 4.5

you to confirm the activation. The current status of appropriate not-active forms
will be changed to default and the forms will hence be available for interviewing.

Activating forms might be appropriate if you have soft appointment cases that
would be active later in the day and you want them to be active now to keep your
crew busy.

! Forms would have the status Not-active if they are in a more westerly time
zone and the beginning calling time for that time zone has not yet been
reached. If you activate forms, those in a more westerly time zone would
also be activated meaning that they are eligible for calling before the
normal starting time for that time zone (as set in the CATI specification
tool, Time zones branch, Do not call before time).

! Non-active forms available for re-activation include those for which time
slices apply. This means that a form that has been receiving only no-
answers can be tried a second time in the same time slice if activated.

Status/Priority column
The Status/Priority column displays the status code for not-active cases and the
priority of active cases. Status codes include Being treated, Not-active, Busy, No-
answer, No need today, and New appointment for today. If the form has Status
code Active the priorities you may see included: Default, Hard appointment,
Medium appointment, and Soft appointment.

10.5.2 Summary
You can view a summary of all the forms in the survey. Click the Summary
option on the tree and the Summary panel appears on the right. This is refreshed
automatically.

 Chapter 10: CATI Call Management System

Developer's Guide 543

Figure 10-52: Summary

The summary displays the outcome of all records in the Blaise data set. The
summary is given by the eight high-level Blaise CATI outcome codes, as well as
the row No call. The Not yet done section represents forms that are still eligible
for the call scheduler (either today or in the future). The Done section represents
forms that Blaise CATI is no longer concerned with unless action is taken (for
example with Manipula) to place some forms back in the queue. The Total of the
Not yet done section and the Total of the Done section add to the number of
records in the Blaise data set. In both sections, the Number of Calls columns
summarise the effort needed to reach the disposition (but note the difference
between a Call and a Dial as documented above).

10.5.3 Forms
The Forms branch allows you to browse all the forms in the entire Blaise data
file. When you click the Forms branch a data listing of all forms appears on the
right panel:

Chapter 10: CATI Call Management System

544 Blaise 4.5

Figure 10-53: Forms

The fields shown are those for which the option Show in overview was checked
on the Field selection branch in the CATI Specification Program.

To search for a specific form, click the key type to search on, then type the value
for the key in the Search box. If the key consists of more than one field, separate
values by semicolons.

See details on a form
To see more information about a form, click the form and zoom in on it by
selecting Management Zoom from the menu or clicking the Zoom speed button.
The Case summary box appears. This is identical to the box that appears when
you zoom on a form when browsing the daybatch. From here you can view
additional information.

Select form for further treatment
There may be times when you need to apply a treatment to an individual form
outside of the regularly scheduled form delivery conducted by Blaise. You would
usually do this to make an appointment, complete a particular interview, or route
an appointment to a particular group or interviewer.

To select a form for further treatment, select the Forms option on the tree, then
double-click the form (or click once on the form and select Management Select
from the menu). The Treat Form dialog box appears.

 Chapter 10: CATI Call Management System

Developer's Guide 545

Figure 10-54: Treat Form dialog box

This is almost identical to the dial screen shown to interviewers.

Make changes or treat the form as described in the following bullets.

• Dial the number by clicking the Dial button. This option is for use with a
modem.

• Under Dial menu, click the appropriate button to select a dial result for the
number. (Note, any high-level dial result chosen in this dialog will not appear
in the history file. A way to avoid this is to enter the instrument by clicking
on the Questionnaire radio button and set the appropriate outcome from
there.)

• The Call as soon as possible option is always on the dial screen for
supervisors and will direct the form to the first available interviewer. The
form receives the highest priority (super) when this is done.

• For whom is used to select the interviewer or group to whom a form should
be routed. This button is active only for the dial results Appointment and Call
as soon as possible.

• Edit any fields for which editing is allowed (as set in the CATI Specification
Program). If a field can be edited, an asterisk (*) appears in the column next
to the field in the Questionnaire data section. Select the field and then click
the Edit button.

• View the Case summary and More Information dialog boxes from this screen
by clicking the Zoom button.

Chapter 10: CATI Call Management System

546 Blaise 4.5

When you are finished, click the OK button.

10.5.4 View active interviewers and groups
The option Active interviewers allows you to see which interviewers in which
groups are currently interviewing.

Click the Active Interviewers or Active Groups option on the tree and lists of the
interviewers and groups appear on the panel. You will see only interviewers or
groups that have been defined in the CATI specification file. The following
sample shows the Active Groups option:

Figure 10–55: View active groups

10.5.5 Set environment options
You can set environment options for the CATI Management Program.

Select Tools Environment Options from the menu. The Environment Options
dialog box appears:

 Chapter 10: CATI Call Management System

Developer's Guide 547

Figure 10-56: CATI Management Program Environment Options

Select the settings as described in the following bullets.

• Save desktop: Select to save the desktop in the registry. This option will
restore the contents of the desktop when restarting the CATI Management
Program.

• Auto create day batch: Select to automatically create the daybatch when a
specification file is opened, if no current daybatch exists.

• Auto refresh desktop: Specify how often (in seconds) the system should
refresh the desktop with the latest information from the survey.

• Meta search path: Type the path that the system should use to search for the
survey's meta information file (.bmi extension).

10.5.6 View history and log files

History file
Blaise CATI maintains a history file that contains a record for each attempt (dial)
made. The history file is an ASCII file and has the .bth extension, in this
example Comtel.bth. You can view the history file through the Tools/CATI
History Browser menu option. Two views of the history file are available, a detail
view and a list view.

Chapter 10: CATI Call Management System

548 Blaise 4.5

Figure 10-57: History viewer, detail view

This Count column shows how many of each dial result an interviewer or group
of interviewers achieved. Scroll through the interviewer/group list by clicking the
down arrow next to the interviewer's name, or clicking the arrows.

The Interview column shows the average number of seconds actually spent
interviewing; the Treatment column shows the average number of seconds spent
working on the form, including time spent reviewing the dial screen.

You can look at different days of the survey by clicking the small arrows to the
right of the date boxes. A calendar appears, allowing you to choose a different
date or range of dates.

If you press the sigma button you will see a summary of that interviewer's (or
group's) performance compared to the whole crew over the dates chosen. An
example of this summary is given in the following figure.

 Chapter 10: CATI Call Management System

Developer's Guide 549

Figure 10-58: History viewer, detail view

To view the history by list, select View List view from the menu.

Figure 10-59: History viewer list view

The list view displays a chronological listing of all attempts (dials). You can
scroll to the right to see all fields that are included in the history file by default
(but not ones you have added).

To create your own summaries of the history file you can use the description of
the history file provided in Chapter 11. If you want to do this during production
you should copy the history file to another location and create the summaries
from the copy. This history file copy should be done with a copying DLL called
blfcopya.dll that can be supplied by the developers along with 2 Maniplus
programs; one that documents how to use it and a second that allows you to test it
on your LAN.

Chapter 10: CATI Call Management System

550 Blaise 4.5

View log file
The log file tracks system-level events such as when a daybatch is created, when
interviewers log on and off, and so on. It is an ASCII file with a .log extension
that can be viewed in any text editor.

The following is a sample log file in the Blaise text editor:

Figure 10-60: Sample log file

10.5.7 Configure the Tools menu
You can configure the Tools menu to run other programs from within the CATI
Management Program. When you do this, an option for that program appears in
the Tools menu. You can run Blaise programs as well as non-Blaise programs.
See Chapter 2 for information on configuring tools in the Control Centre, as the
procedure is exactly the same.

10.5.8 Running the CATI Management Program outside the
Control Centre

You can run the CATI Management Program as a separate program using the
btmana.exe program file. Use the following syntax:

BTMANA SurveyFileName [options]

 Chapter 10: CATI Call Management System

Developer's Guide 551

Various program options such as the batch creation of the daybatch, creating a
daybatch for the next survey day, the working folder, and others can be set on the
command line. See Appendix A “CATI Management Program (btmana.exe).”

The name of the survey file is the same as the name of the data file it belongs to.
The extension .bts is assumed for the survey file name; if you give it a different
extension, the system will still assume that the extension is .bts.

10.6 Example: A Simple CATI Survey

To help you see how a Blaise CATI system works, we have provided the example
survey comtel.bla in the \Doc\Chapter10 of the Blaise system folder. It has
the ingredients needed to demonstrate all parts of the CATI Management System.
A Manipula program called readin.man will read in a fictitious data set of
names and telephone numbers to initialise the data file.

10.6.1 Step 1: CATI data model
Selected parts of the data model of our Comtel example are shown in the
following examples:

Chapter 10: CATI Call Management System

552 Blaise 4.5

DATAMODEL ComTel "National Commuter CATI Survey, individual follow-up."

 PRIMARY
 Ident, PersonNo

 SECONDARY
 Telephone = Phone
 Form_Stat = Manage.FormStat
 For_Whom = ForWhom
 LastDialResult =
 CatiMana.CatiCall.RegsCalls[1].DialResult

 PARALLEL

 NonResponse = NonResp
 Appointment = Appoint
 OtherOutcome
 NoAnswer
 Answering_Machine = AMachine
 Disconnect
 BusyCall
INHERIT CATI

 INCLUDE "Mylib.lib"

 LOCALS
 LANAME : STRING[30]

INCLUDE "IDENT.INC"
FIELDS
 PersonNo : 1..20
 Phone : STRING[12]
 Wave : 1..20
 KindOfCase : STRING[9]
 TimeZone : STRING[3]
 TimeSlice : STRING[3]
 Name : STRING[33]
 ForWhom : STRING[10]
 IntName : STRING[10]
 IntID : STRING[5]

 CatiSelect: STRING[5] {This can be any value. It can be computed from any
criteria in the Readin.Man program or another Manipula setup.}
 CatiSort : STRING[5] {This can be any value. It can be computed from any
criteria in the Readin.Man program or another Manipula setup.}

INCLUDE "MANAGE.INC"

{Subject matter blocks below.}

INCLUDE "ADDRESS.INC" {Address}
INCLUDE "BPERSONT.INC" {Person}
INCLUDE "WORKPLCY.INC" {WorkPolicy, called in BWorkT.INC}
INCLUDE "BWORKT.INC" {Work}

{Parallel CATI outcome blocks below.}
INCLUDE "NONRESP.INC" {NonResponse}
INCLUDE "APPOINT.INC" {Appoint}

INCLUDE "DISCONCT.INC" {For disconnect outcomes}
INCLUDE "AMACHINE.INC" {For answer machine/service outcomes}
INCLUDE "NOANSWER.INC" {For no answer call outcomes}
INCLUDE "BUSY.INC" {For busy call outcomes}
INCLUDE "OTHER.INC"
…
…ENDMODEL

 Chapter 10: CATI Call Management System

Developer's Guide 553

Appointment block
A data model for a CATI survey must always contain a user-defined
APPOINTMENT block. Since we are using the default appointment block provided
by Blaise (the CATI Specification file setting Disable appointment dialog in the
DEP is not checked), this block contains the questions you would like to ask after
an appointment has been made. Making the appointment itself is handled by a
special module in the TAppMana block. The appointment block you specify is a
subsidiary block that collects additional information that may be helpful for other
interviewers to know later on.

The appointment-block must be a parallel block specified in the SETTINGS section
at the top of the data model. If you assign the name Appointment to this block
field in the SETTINGS section, the Blaise system will know that it must be used for
the appointment treatment.

Inherit CATI
The data model contains the special setting INHERIT CATI. This causes an extra
block to be added to the data model. This block contains information used by the
CATI Management System. You do not have to worry about what information
this special block contains. Everything is taken care of automatically. Just
remember that your data model is larger than you think it is.

Telephone number
The telephone number must be included in the data model. In our example, we
use the field Phone for this purpose. The field should be a text field of sufficient
length to store the longest numbers. If you are using the modem feature, make
sure the telephone number contains all digits necessary to obtain an outside
telephone line.

You are now ready to prepare the data model in the Control Centre.

10.6.2 Step 2: Initialising the data file
Use Manipula to read information from an ASCII file with telephone numbers
and other information into the Blaise data set. For our example, we have included
the ASCII file comtel.asc in the Blaise system distribution.

The file contains made-up names, streets, towns, and telephone numbers. It is set
up in a way that will allow you to experiment with the different parts of the call
scheduler. This information must be stored in the corresponding fields in various
parts of the data model according to the needs of the survey. The Manipula setup

Chapter 10: CATI Call Management System

554 Blaise 4.5

to read the information into the Blaise data file is partially shown in the following
example:

USES
 CATIForm 'Comtel'

 DATAMODEL InPut {dat file}
 BLOCK Bident
 FIELDS
 Region "@Yregion Code.@Y" : 0..97
 Stratum "@Ystratum Code.@Y" : 0..9997
 SampleNum "@YSample number.@Y" : 1000..9000
 ENDBLOCK
 FIELDS
 Ident : Bident
 PersonNo : 1..20
 DUMMY[1]
 Phone : STRING[15]
 DUMMY[1]
 Name : STRING[10]
 DUMMY[1]
 PAddress : STRING[17]
 DUMMY[1]
 City : STRING[11]
 DUMMY[1]
 State : STRING[2]
 DUMMY[1]
 TimeZone : STRING[3]
 DUMMY[1]
 TimeSlice : STRING[3]
 DUMMY[1]
 ForWhom : STRING[10]

 ENDMODEL

INPUTFILE
 InFile : InPut ('Comtel.asc', ASCII)

OUTPUTFILE
 OutFile : CATIFORM ('Comtel', BLAISE)

The USES section of the setup introduces two data models. The identifier COMTEL
refers to the data model of the CATI survey, and the identifier INPUT denotes the
data model describing the ASCII file. According to the INPUT section, Manipula
expects to find the telephone and address information in the file comtel.asc.
According to the OUTPUT section, the information is written to the Blaise data file
comtel.bdb.

When you run this Manipula setup, the administrative fields of the data file are
filled in, including the time zone, to whom, and time slice fields. Name and
address information is also provided, all other fields are empty. You can look at
the data file using the Database Browser.

 Chapter 10: CATI Call Management System

Developer's Guide 555

10.6.3 Step 3: Survey specification
Now that you have completed your preparations, you can create a CATI
specification file using the CATI Specification Program. If you were doing this
from scratch, you would start the CATI Specification Program and open your data
model’s meta information file with a .bmi extension.

For this example we have provided a sample specification file called
comtel.bts for you to look at. Previous sections document how to fill in each
of the dialogs. You can use a previously created CATI specification file for a new
survey in order to avoid having to fill in all parameters each time. In the Survey
days calendar you can use Ctrl-C to clear previous survey days. Interviewer,
group, and quota information can be loaded from external ASCII files as
documented above.

You would then save the specification file using the menu options. In this
example, we have saved our file as comtel.bts. Once the specification file is
complete, you can move on to survey management.

10.6.4 Step 4: Survey management
The supervisor has to create a daybatch for each day in the survey on which
interviewing takes place. This is done in the CATI Management Program. The
following figure shows the file comtel.bts file from our example:

Figure 10-61: CATI Management Program for Comtel example

Chapter 10: CATI Call Management System

556 Blaise 4.5

To create a daybatch for a new interviewing day in the survey period, select
Management Create Daybatch from the menu. The system creates the
daybatch and, when finished, a dialog box appears with the results of the
daybatch:

Figure 10-62: Create Day batch Results for Comtel example

This box shows how many soft, medium, and hard appointments are set for the
current day. Click the OK button to close the dialog box.

There are many functions in the CATI Management Program, and these are
covered in previous sections in this chapter. For the sake of our example, creating
the daybatch is the most important step, because without the daybatch you cannot
interview.

10.6.5 Step 5: Interviewing
After you have created the specification file and the daybatch, interviewing can
start. Run the DEP using the Comtel data model. Each time the system is ready
for a new interview, the dial screen appears.

 Chapter 10: CATI Call Management System

Developer's Guide 557

Figure 10-63: Dial screen for Comtel example

Under the Questionnaire data section is the list of selected fields and their values.
Of course, the telephone field is one of them. It is always the first in the list.

If the interviewer selects Start interview, the DEP will open a form on the screen,
and the interviewer can start asking questions.

You can always interrupt the interview when necessary and access the appropriate
parallel blocks. This can be done by selecting Navigate Sub Forms from the
menu. Our Comtel example has the following parallel blocks:

Figure 10-64: Parallel blocks for Comtel example

The interviewer selects the appropriate option and clicks the OK button. If she
chooses the Appointment block, the Make Appointment dialog box appears. (This
is described earlier in this chapter.)

An interviewer may also interrupt the interview by using the key combination
Ctrl-Shift-Home to return to the dial screen.

This completes our discussion of our CATI example.

Chapter 10: CATI Call Management System

558 Blaise 4.5

10.7 CATI/CAPI Compatibility

If you are using your survey for Computer Assisted Personal Interviewing (CAPI)
as well, with interviewers using laptop computers to conduct field work, you can
use the same data model for CAPI as for CATI. This will ensure that the CAPI
data model has the same data definition as the CATI data model. But there are a
few considerations.

Override CATI mode
You can run the CAPI instrument with the /D parameter to override the CATI
mode. This means that the CATI Call Management System will not come up on
the laptop, which is a different interviewing medium that may have its own
management criteria. For example, a field interviewer will often organise her
work around the geography of the respondents, no matter which surveys she is
working on at the moment.

CAPI appointment block
If you disable the CATI mode with /D, you can still use the appointment-making
module of the CATI system, but only if the CATI specification file (.bts
extension) is present. If you do not have this file present, and still want the ability
to make appointments, you must insert a completely separate appointment block
that is invoked only in CAPI mode.

Manually access forms
Another option is to allow the CAPI interviewer to use the CATI system to
manually access forms while in CATI mode. She can use the menu options New,
Get, or Browse, as well as the CATI dial screen.

Using the call scheduler
In CAPI, you do not have the power of the networked environment for survey
management, handling appointments or busy signals, or accumulating quota
counts. On the other hand, you can use the appointment-making facility of the call
scheduler to keep track of appointments, busy signals, and the like, but only for
the interviewer on the laptop.

 Chapter 10: CATI Call Management System

Developer's Guide 559

10.8 Other Considerations

Dial result field
As a survey goes on for many days, you usually have to read data into or out of
the CATI data file. In the Comtel example, there is a field in one of the provided
CATI management blocks known as the DialResult field. It is declared as a
secondary key. When it is time to read completed forms out of the data set, you
can use a Manipula program to key on a value of DialResult. See Chapter 8 for
information on reading just those forms with a complete value for DialResult. The
CATI Call Management System updates the value of DialResult automatically.

Manipula on a live data set
You can run Manipula while a Blaise data set is in use using
ACCESS=SHARED. With this you can read forms into or out of the data set, or
make customised reports without interrupting the calling. You have the option of
skipping forms currently in use, or having Manipula wait while the in-use forms
are cleared. Running Manipula with ACCESS=SHARED is very slow due to the
security measures taken to protect the data set. A way to minimise this slow
performance is to run a Manipula program once against the data set, extracting
enough information that one time to into an ASCII file and run a number of
reports from that ASCII file. An alternative way to avoid a long Manipula run is
to write extra survey management information to a history file and use the
elaborated history file as a source of real-time reports and listings (see above on
how to access this history file during production).

CATI testing utility (CATI Emulator)
A CATI testing utility, btemula.exe, is included with the Blaise system
software. With this utility you can emulate an interviewing session without
interviewers. You can test the call scheduler, or test the load on the LAN made by
numerous machines operating at one time. This program can work off of a script
of data values and fill in forms in the data set.

Modify daybatch
Maniplus, an extension of Manipula, allows you to modify the daybatch without
recreating it. You can add a form to or remove a form from the daybatch during
production. See the Maniplus manual for more information.

Chapter 10: CATI Call Management System

560 Blaise 4.5

Resetting some management fields upon re-entry
When you re-enter a not-completed form a second time it can be useful to reset
the contents of some management fields or blocks to empty. For example, if an
Other outcome had been recorded and fields in the Other parallel block filled in
during the previous attempt, you would want the Other parallel block emptied
before another attempt is made so the interviewer doesn't see the previously
entered values for this management data. In the Comtel.bla file is an auxfield
called ReEntry. When this auxfield is empty, as it will be upon re-entry, some
blocks and fields are emptied out. Then the auxfield ReEntry is populated with
the value Yes. Thus the emptying out of these management fields and blocks is
done only once per session.

Backing up and archiving
A typical CATI survey lasts anywhere from several to many days. A common
practice is to run jobs overnight in batch after the calling day. These jobs may
include reading forms into or out of the Blaise data set, creating reports, updating
records, and so forth. A concern with any data set (Blaise or not) is that over time
it may become corrupted or too large. A way to avoid large problems is to handle
them when they're small. If you run Hospital/Recover and a Blaise-to-Blaise
Manipula program every night, you can root out small data problems, and
compact the data set, as part of normal operations. Another helpful practice is to
archive the data set before every major batch job in a compressed file. This way if
the batch processing is interrupted (say by a power failure) you can pick it up
where it left off instead of having to run the whole thing when you first arrive at
the office. Additionally if there are problems with the batch processing, having
snapshots of the data set at each major step can be an aid in diagnosing problems.

Controlling the call scheduler
Broadly speaking, there are two ways to control the execution of the call
scheduler. First is to control the composition of the daybatch. Second, once a
daybatch is created, is to control the delivery of forms from the daybatch. Both
aspects of controlling the call scheduler are equally important. It is possible to
create reports from Manipula that indicate for example, whether your study is
cycling through the same forms day after day while leaving others untouched.
You should continually monitor the creation of the daybatch and the delivery of
forms from the daybatch during calling.

Changing the CATI specification file settings during the course of a survey
The CATI Specification Program settings should be considered to be dynamic
and changeable as a survey progresses. Settings that are appropriate for the start
of a survey, where you are trying to touch all cases as fast as possible, may not be

 Chapter 10: CATI Call Management System

Developer's Guide 561

suitable for the end of a survey where you're trying to reach relatively few cases.
It is useful to think of three phases of a survey: Start up, Cruising, and Finish. For
each survey phase, consider the following guidelines (not a complete list):

• Start up: Enable time slices, low maximum number of dials, and moderate
number of busy dials.

• Cruising: Time slices still enabled, but with finer divisions (2nd time slice
set), moderate maximum number of dials, and moderate number of busy
dials.

• Finish: Disable time slices, high number of maximum dials, high number of
maximum busy dials.

Windows® NT setting
Blaise CATI works well in a variety of network environments. However, under
Windows® NT there is a setting you must be aware of. The setting, opportunistic
locking, must be turned off. A network administrator must do this. If this setting,
controlling a method of buffering data, is not turned off you will corrupt the data
file. It is not a matter of “if,” it is a matter of “when.”

Chapter 10: CATI Call Management System

562 Blaise 4.5

Developer's Guide 563

11 CATI Technical Details

This chapter describes some technical aspects of the CATI Call Management
System. You do not need to know the material in this chapter to effectively use
the CATI Call Management System. All the information you need to know is
included in Chapter 10. This chapter is for users who want to know more about
how this system works.

In this chapter we will discuss:

• Rules for inclusion in the daybatch.

• The operation of the call scheduler, including selecting forms, routing back
forms, and assigning priorities.

• Treatment types, treatment of dials, and exceptions to treatment rules.

• The files needed for a CATI survey.

• The history file.

In the last section of this chapter, a glossary of CATI terminology is provided.

11.1 Rules for Inclusion in the Daybatch

A form is a candidate for inclusion in the daybatch if it meets the following
conditions:

• The form has not been concluded yet, meaning that the last call has yielded
one of the dial results nonresponse, response, disconnected, or other.

• There is no appointment for the form, or a previous appointment for the form
has expired. The telephone number has not yet had the maximum number of
calls.

• The form has an appointment that is current and that can be met on the
interview day. For the various types of appointments, this means:

Chapter 11: CATI Technical Details

564 Developer’s Guide

Hard appointment. The agreed date for the appointment has been reached, or
today is the first interview day after the agreed date.

Preference for a period with day part. Today is within the specified period,
and there will be interviewing activity on the specified part of the day.

Preference for a period without day part. Today is within the specified
period.

Preference for a day in the week with day part. Today is one of the specified
days of the week, and there will be interviewing activity on the specified day
part.

Preference for a day in the week without day part. Today is one of the
specified days of the week.

Preference for a day part. There will be interviewing activity today on the
specified day part, or today is the last day of the survey period.

• The telephone number field is filled in.

• If Daybatch select fields have been defined in the CATI specification file, the
conditions specified for inclusion are satisfied, or the conditions for exclusion
are not satisfied.

• If time slices are used, a form that does not have an applicable appointment
for the current day but has already been attempted at least once on a previous
day is included in the daybatch only if there is a time slice available that is
current.

The forms are ordered according to their appointment types. The order is:

• Hard appointment.

• Preference for a period with day part.

• Preference for a day in the week with day part.

• Preference for a period or for a day in the week without day part. These two
cases are treated together for the assignment of a starting time to the form.

• Preference for a day part.

• No appointment/preference or expired appointment/preference.

 Chapter 11: CATI Technical Details

Developer's Guide 565

For each of the above-mentioned groups of forms with preference, the forms with
last possibility are put at the start. (The term last possibility applies to forms for
which an appointment with preference has been made, and it is at the end of the
period to contact them.) Last-chance situations are identified independently of the
day part.

After sorting the forms according to the appointment type and last chance, the
program will further sort the subgroups:

• If Daybatch sort fields have been defined in the CATI specification file, it
sorts the forms according to the specification.

• If Daybatch sort fields have not been defined, it sorts the forms according to
the number of previous calls. It then shuffles the numbers within the new
groups at random.

The forms will be included in the daybatch from the sorted list, until either the
daybatch is full or all forms have been included.

11.2 Call Scheduler

The call scheduler is responsible for scheduling the telephone numbers in the
daybatch, making the forms available at the right time. The scheduler can also
modify a form's priority, if necessary. A large number of parameters can be set to
control the behaviour of the scheduler.

The scheduler is automatically activated by the Data Entry Program of the
interviewer who is the first to ask for a new form in a certain time interval, or
when an interviewer concludes a call after a time interval has elapsed. Usually,
scheduling takes less than a second.

Statuses in the daybatch
The scheduler works by assigning one of the following statuses to forms in the
daybatch:

• Being treated. A dial is currently being performed for this number.

• Busy. The result of the last dial was busy and the form will be given the busy
treatment.

Chapter 11: CATI Technical Details

566 Developer’s Guide

• No-answer. The result of the last dial was no-answer, and the form will be
given the no-answer treatment.

• New Appointment for Today. An appointment for today has just been made
for this form. The next schedule will determine whether the new status should
be active or not-active.

• No need today. This form should not get another dial in the current daybatch
if the dial result is final.

• Not-active. The form cannot get a dial at the moment. The form will be given
the status active at a certain time.

• Active. The form is ready for a dial.

The treatment of a telephone number in the daybatch depends on its status.

Using information from the daybatch
The scheduler uses the information in the daybatch. This information includes:

• The interval in which a number should be activated (start interval).

• The interval after which the number should no longer be active (end interval).

• The time difference between the respondent and the interviewer.

• The priority that will be assigned to the number at the moment of activation
(future priority).

• The number of dials within the current call (dials).

• The interval in which the number was dialled last (dial interval).

• The number of times in a row that the telephone number has had the status
busy (busy dials).

• Quota information.

• Time slice information.

For every form with the status not-active, the scheduler checks whether its start
interval has been reached. If it has, the status of the number becomes active, and
it is assigned a priority based on its future priority.

11.2.1 Selecting forms
When an interviewer requests a form from the dial screen, a form is selected from
the daybatch. This selection is performed as follows.

 Chapter 11: CATI Technical Details

Developer's Guide 567

The system first determines whether there are active forms. If there are active
forms, the first form in the daybatch satisfying the following three conditions will
be selected:

• It has the highest available priority. Only forms that can be treated by the
interviewer asking for a form are taken into account.

• It is the most suited form. The following ordering is used to determine this, in
decreasing order of being suited:

a) The form is for this particular interviewer only, including already expired
forms.

b) The form is for the main group of the interviewer, including already
expired forms.

c) The form is for one of the other groups to which the interviewer belongs,
including already expired forms.

d) The form is for everyone (not for any specific interviewer or group), or it is
an expired form.

• It is the most urgent form. The form has the lowest number of dials within the
daybatch. If there are other forms with the lowest number of dials, it is the
form that has been active for the longest period of time.

The second condition is applied only if there is more than one form satisfying the
first condition. The third condition is applied only if there is more than one form
satisfying the second condition. Note that even if a form has expired, the
interviewer or group to whom it was originally meant to go still has priority over
the other interviewers or groups.

The telephone number that has been selected for an interviewer is given the status
being treated.

11.2.2 Routing back forms
In order to have the scheduler route a form back to a certain interviewer or group
of interviewers, you have to do two things.

• First, define a route-back (or ToWhom) field in the data model. The ToWhom
field specifies the destination the scheduler must use. The ToWhom function
is one of the functions that can be assigned to a field in the CATI
specification file.

Chapter 11: CATI Technical Details

568 Developer’s Guide

• Second, define the destinations by specifying which groups and interviewers
will be working on the survey. This is done in the CATI specification file.
The name for an interviewer is determined by the system, first by referencing
the registry of the interviewer’s workstation. The value stored for BlaiseUser
in the environment subfolder of the HKEY_CURRENT_USER subfolder is
assumed to the interviewer’s name. If this value is not present, the system
uses the login name to identify the interviewer. An interviewer can be a
member of more than one group.

While building a daybatch, the system determines which numbers have to be
routed to a specific destination based on the value of the ToWhom field. This
destination can be either an interviewer or a group. If the ToWhom field is empty,
the case can be routed to any interviewer.

If an appointment is made by an interviewer, the contents of the ToWhom field
will be changed according to the value of the route-back parameter, as set in the
CATI specification file:

• If you select to route back to Interviewer, the ToWhom field will be filled
with the name of the interviewer who made the appointment.

• If you select to route back to Group, the ToWhom field will be filled with the
name of the main group the interviewer belongs to. If the interviewer belongs
to no group, the field will be made empty.

• If you select Do not change route back, the contents of the field will not be
changed.

During production, the supervisor can change the route-back information by
selecting the form for further treatment. (The procedure for this is described in
Chapter 10.) By changing the For whom box on the Treat Form dialog , the form
can be routed to a different group or interviewer. The ToWhom field will then be
filled with this value. If the option Everyone is selected, the ToWhom field will be
made empty.

11.2.3 Assigning priorities, starting times, and ending times
When the scheduler is activated, it assigns a priority to each form in the daybatch.
The scheduler determines which forms to select on the basis of their priority. The
following table summarises the priorities.

 Chapter 11: CATI Technical Details

Developer's Guide 569

Figure 11-1: Priorities

Situation Priority

Appointment made by supervisor 8 Super

Hard appointment for date and time,
busy

7 Hard-busy

Hard appointment for date and time 6 Hard

Appointment with preference, last
possibility, busy

5 Medium-busy

Appointment with preference, busy 4 Soft-busy

No appointment, busy 3 Default-busy

Appointment with preference, last
possibility

2 Medium

Appointment with preference 1 Soft

No appointment 0 Default

The Appointment made by supervisor is the result of a Call as soon as possible
dial made from the supervisor’s dial screen.

Last-chance forms with a preference appointment are always given medium
priority. Other forms with a preference always get soft priority. Forms with an
appointment for date and time get hard priority. Forms without
appointment/preference and with expired appointment/preference get the default
priority. A form’s priority is only relevant when its status is active.

The soft, medium, and hard priorities are always the result of appointments with
preference or of hard appointments.

Priorities are adjusted during scheduling if necessary. For not-active forms, the
system determines which priority they will get on activation. This priority is
called the future priority.

If a hard appointment expires before it is met, it will be assigned medium priority
on the first survey day after the day for which the appointment was made. On the
other days it will get default priority. Expired preferences get default priority.

Forms with day part preference get medium priority on the last day of the survey.
On the other days, they will get soft priority.

Chapter 11: CATI Technical Details

570 Developer’s Guide

Start and end times
The starting time for forms with hard priority is the time for which the
appointment was made. The ending time for such forms is not relevant.

Forms with default priority for which the time slice mechanism is not used will be
assigned the starting time specified in the CATI specification file for the starting
time of the first crew. The scheduler cannot deliver these forms before this time.
If time slices apply, then the start and end times for the form will be set to the
start and end times of the first available time slice definition.

If a form with preference for a period or for a day in the week without day part
has soft or medium priority, it is assigned a starting time based on the day's crew
definition. The numbers are distributed over the various crews in accordance with
crew capacities. The starting time of a number is the starting time of the crew it is
assigned to; its ending time is the ending time of the last crew. The capacity of a
crew is defined as the number of interviewers multiplied by the number of
intervals in which the crew is active.

The starting and ending times of all other numbers with preference are derived
from the specified day part. Medium priority numbers will be active for at least
one hour. This may require adjusting the starting and ending times.

The starting and ending times are corrected for the Do not call before and Do not
call after settings.

Time slices and the call scheduler
The call scheduler takes time slice information into account, and distinguishes
between two situations.

• In the first situation, the number did not receive a dial between the start and
end time set for that number. Therefore, the number will be de-activated. The
system determines whether the form has an untried slice definition for the
same day. If so, the number will receive a new start and end time and the not-
active status. It will be activated when the new start time is reached. If no
time slice is available, the number receives the no need today status.

• In the second situation, the number received a no-answer dial. The no-answer
treatment will be given. See the section 11.3 for information about
Treatments.

 Chapter 11: CATI Technical Details

Developer's Guide 571

11.2.4 Activating a form with medium or higher priority

When activating a form with a medium or higher priority, the scheduler
determines which interviewers are currently working on the survey. Now there
are two possibilities: the case has to be routed back to an interviewer or routed
back to a group. Remember that the following description applies only to cases
with medium or higher priority.

Form routed to an interviewer
If the form has to be routed to an interviewer, the case is activated for the
specified interviewer. The scheduler will wait for him until the Interviewer de-
activation delay (as specified in the Scheduler parameters in the CATI
Specification Program) has elapsed. Again there are two possibilities:

• The interviewer belongs to no group. In this case, the form will be routed to
any interviewer currently working.

• The interviewer belongs to a specified group. In this case, the scheduler will
try to route the form to someone in that group. The scheduler will wait for
one of them until the Group de-activation delay has elapsed. If a member of
the specified group is still unavailable by that time, the scheduler will expire
this route. The form can then be routed to any interviewer.

Form routed to a group
If a form has to be routed directly to a group, the form is activated for the
specified group. The scheduler will wait for a member of the group until the
Group de-activation delay has elapsed. If a member of the specified group is still
unavailable by that time, the scheduler will expire this route. The case can then be
routed to any interviewer.

Expire on de-activation delays only
 If Expire on de-activation delays only has not been checked in the Scheduler
Parameters of the CATI specification file), the interviewer de-activation delay is
applied only if the specified interviewer is on the system. This means that if the
specified interviewer is not running the data entry program at the starting time for
the relevant appointment, the form can be routed to anyone. Likewise at least one
member of the target group needs to be on the system for the group de-activation
delay to be applied. If Expire on de-activation delays only has been checked in
the CATI specification file, the interviewer and group de-activation delays are
applied irrespective of who is and is not on the system.

Chapter 11: CATI Technical Details

572 Developer’s Guide

If a form has expired because a specific interviewer or group was not available,
and that interviewer or group is available in the next schedule, that interviewer or
group will still have priority over other interviewers or groups.

An example
Let's look at an example. Suppose you have a case with a hard appointment for
16:00 hours for interviewer Jones. So the value of the ToWhom field is Jones.
Expire on de-activation delays only has not been checked in the CATI
specification file. Interviewer Jones is not working on the survey when the
scheduler activates the case and so the interviewer de-activation delay does not
apply. If Jones has been assigned to the group Experienced and an interviewer of
that group is available, the form will be activated for all members of that group. If
Jones has not been assigned to a specific group, the form is activated for all
interviewers.

As another example, suppose you have a case with no preference for the group
French speaking. Because the priority of such a form is less than medium, the
form will only be available to members of the specified group.

The interviewer and group de-activation delays mentioned above can be specified
separately for medium priority and for hard or higher priority. Note that the de-
activation delays apply only to forms with medium or higher priority.

Let's look again at the Jones example. Suppose you have a hard appointment for
the 17:00 hour, but interviewer Jones doesn’t log onto the system until 16:30. His
first interview is very long. The Interviewer de-activation delay is 15 minutes and
the Group de-activation delay is 30 minutes. At 17:10, Jones asks for a new form.
The form with the 17:00 appointment is still available for Jones, because the
interviewer de-activation delay has not elapsed. If, however, Jones doesn’t
request a new form until 17:30, there is a chance the form is no longer available
for him. Another member of the group Experienced may already have handled it.
If the form has not been handled yet, it is still available for all members of the
Experienced group only. This is because the group de-activation delay has not
elapsed yet.

 Chapter 11: CATI Technical Details

Developer's Guide 573

11.3 Treatments

The treatment a form gets depends on the dial result. The CATI system
distinguishes a number of treatment types:

• A no-answer or answering service dial result gets the treatment no-answer.

• A busy dial result gets the treatment busy.

• An appointment dial result gets the treatment appointment.

Forms with the dial results disconnected, other, response, and nonresponse are
considered concluded, and therefore no special treatment is needed.

For both the no-answer and busy treatments, we talk about dials and calls. As a
general rule, all dials for a given telephone number on a given day make up one
call. There are two exceptions to this rule, which are described below in section
11.3.2.

No-answer treatment
With the no-answer treatment, a number of dials, up to the limit set in Maximum
number of dials in the CATI specification file, are performed during the rest of
the day.

When this maximum is reached, the telephone number is assigned the no need
today status. As a result it will no longer be presented to an interviewer in the
same daybatch. If the maximum has not yet been reached, the treatment depends
on the form's future priority, which becomes its actual priority at activation time:

• If the future priority is default, the form will get the status not-active. The
number can get another dial as soon as the time specified in the Minimum
time between ‘other’ no-answer has elapsed. If there is a time slice set and
dials are allowed on the same day, the system determines whether there is
another slice definition available during the same day that has not yet been
tried for this form. That slice definition has to have a start time that is far
enough in the future—later than the earliest time that the number can become
active again based on the time specified in the Minimum time between ‘other’
no-answer. If so, the number will receive a new start and end time and the
not-active status. If no slice is available or no other slice may be tried, the
number receives the no need today status. When and if this will actually
happen depends on the size and the composition of the daybatch.

Chapter 11: CATI Technical Details

574 Developer’s Guide

• If the future priority is hard then the status will become not-active. The
number can be phoned back after a number of minutes, according to the
Minimum time between hard/super no-answer setting.

• In all other cases (future priority medium or soft), the status will also become
not-active and reactivation time will have to be calculated. This calculation is
carried out as follows: The time that is still available for the telephone number
(this depends on the form's dial time and end time) is divided by the number of
dials left for the form in the current daybatch. The result is added to the
current dial interval.

For example, suppose a number has to be dialled between 13:00 and 17:00 hours
and its maximum number of dials is six. The first dial is carried out at 13:30 with
result no-answer. So the number can be phoned back during 3½ (up to 17:00
hours) and can get five more dials. The next time the number will be dialled is
14:05 = 13:30 + 0.35 (= 3½ hours divided over five dials).

The delay after which the number will be dialled again is calculated to be at least
the value specified by the parameter Minimum time between ‘other’ no-answer in
the CATI specification file.

Remember that the CATI system always works with 5-minute intervals. For
example, if a number has to be phoned back 15 minutes later, it will be activated
when three intervals have elapsed. If the number has been dialled at 14:04:59, it
will be reactivated at 14:00 (because this is the dial interval) + 0:15 minutes
(three intervals) = 14:15. This is less than 15 minutes later! The reactivation time
is calculated based on the number of intervals.

If the no answer treatment is being applied to a form with an answering service
dial result and the setting Do not allow multiple same day answering machine
calls is checked in the CATI specification file, no need today status is assigned to
the form. In such a case, the answering service dial result is normally being used
to indicate that a message has been left and so the form should not be called again
on the same day.

The busy treatment
The idea behind the busy treatment is that a number with the dial result busy must
be quickly dialled again as there is a fair chance to get somebody on the line. It is
also possible that the receiver has not been replaced. So if a number has had the
dial result busy several times in a row, it is better to stop the busy treatment. You
can specify the maximum number of busy dials for the busy treatment. You can
also specify the time between subsequent dials.

 Chapter 11: CATI Technical Details

Developer's Guide 575

The scheduler keeps a count of successive busy dials. It uses this count to
determine which one of the eight possible Minutes between busy dials settings
from the CATI specification file should be applied. When and if the limit set in
Maximum number of busy dials is reached, the scheduler applies the no answer
treatment to the busy dial result. This means that the scheduler has given up on
chasing a series of busy dials and is choosing to treat lump these busy dials
together into the equivalent of one no answer dial.

The appointment treatment
The appointment treatment sees to it that appointments will be dealt with
correctly, so that numbers with an appointment will be included in or excluded
from the daybatch depending on the appointment information. The appointment
information can either be filled in by an interviewer or it can be imported into the
Blaise® data file from an ASCII file.

11.3.1 Treatment of dials
Each time an interviewer selects to retrieve a form in the Data Entry Program, the
scheduler checks whether there are forms that can be dialled and selects the most
appropriate one (see the Selecting forms section in this chapter). After selecting
the form, the dial screen is presented to the interviewer. If no more forms are
available, then an appropriate message is presented to the interviewer.

A number that is busy will be given a number of busy dials (see the explanation
of Busy treatment above in this section). If there is no answer, or if contact is
made with an answering service, the interview cannot be carried out. In this case
a number of dials may be performed later in the day (see the explanation of No-
answer treatments above in this section). If no contact has been established by the
end of the day, the number will be contacted another day in the survey period
unless it has had the maximum number of calls.

If it appears to be impossible to make contact (for example, because the number
does not exist or has been disconnected), no more calls should be made. The
interviewer must then choose a proper final dial result for the number, such as
nonresponse or disconnected number.

11.3.2 Exceptions to general treatment rules
There are two exceptions to the general rules for the treatment of forms. For these
exceptions, the program ignores the maximum number of calls as specified in the
CATI specification file.

Chapter 11: CATI Technical Details

576 Developer’s Guide

The exceptions are:

• If an appointment is made for today, the new appointment is treated as a new
call.

• On the very last interview day of the survey period, once the day part has
expired for forms with medium priority (soft appointments receive medium
priority on the last day), these forms remain in the daybatch with default
priority. Any dial attempts made on these forms after the day part has
expired are considered part of a new call.

11.4 Files Needed for CATI

This section lists the various files that are needed for a CATI survey. Files
marked with an asterisk (*) are optional.

Figure 11-2: Files needed for CATI

General Blaise® Files

Name Function
<file>.bmi
<file>.bdb
<file>.bdm
<file>.bfi
<file>.bjk
<file>.bpk *
<file>.bsk *
<file>.brd *
<file>.bri *
<file>.log *
<file>.bxi*

The meta-information file
The Blaise data file
Page layout for the Data Entry Program
The file-info file
The join-key file
The primary key file
The secondary key file
The remarks data file
The remarks index file
The log file
Extra meta information

Figure 11-3: Additional files needed for CATI

Specific CATI Files
Name Function
<file>.btd
<file>.bti
<file>.bts
<file>.bth
<file>.bc

The daybatch data file
The daybatch index file
The survey definition file
The history file
The counts file

 Chapter 11: CATI Technical Details

Developer's Guide 577

You can pre-set basic information for a survey in the CATI specification file
(.bts extension). Then, after setting the parameters, you can copy the file to
other survey names or to other locations. (See Chapter 10 for details on creating a
CATI specification file.)

11.5 History File

The history file stores information on the dials made by the interviewers or the
supervisor using the data entry program. The history file contains the following
information about the number that has been dealt with:

• The primary key

• An internal key

• The date

• The dial time

• The number of calls

• The number of dials

• Interviewer who made the dial

• The priority before the dial was made

• The priority after conclusion of the dial

• The dial result

• The line number in the dial menu that was selected by the user

• The appointment type (if the dial result was Appointment)

• The time when the dial was completed

• The time in seconds needed for the complete dial

• The time in seconds needed for the interview

The file can be viewed using the bthist.exe program (this is described in
Chapter 10). The history file is a delimited file, and the fields are separated by
commas. If additional fields from the datamodel have been selected for inclusion
in the history file (see section 10.4.6), the values in these fields can be seen by
opening the history file (it has a .bth extension) as a regular text file. The fields

Chapter 11: CATI Technical Details

578 Developer’s Guide

are shown in the same order as they are presented in the CATI specification file in
the Field Selection subbranch.

The following data model, history.bla, describes the history file (this can be
found in the \Doc\Chaptr11 folder):

 Chapter 11: CATI Technical Details

Developer's Guide 579

DATAMODEL history

 SECONDARY
 InternalKey, DialDate, DialTime

 TYPE
 TEntryPrio = (Default (1),
 SoftAppoint (2),
 MediumAppoint (3),
 BusyDefault (4),
 BusySoftAppoint (5),
 BusyMediumAppoint (6),
 HardAppoint (7),
 BusyHardAppoint (8),
 SuperAppoint (9))

 TDialResult = (CResponse (1),
 NoAnswer (2),
 Busy (3),
 Appointment (4),
 NonRespons (5),
 AnswerService (6),
 DisConnect (7),
 Others (8))

 TExitPrio = (Busy (1),
 NoAnswer (2),
 NewAppointForToday (3),
 NoNeedToday (4))

 TAppointType = (NoPreference (1),
 CertainDate (2),
 PeriodDaypart (3),
 WeekdayDaypart (4),
 PeriodOnly (5),
 WeekdayOnly (6),
 DaypartOnly (7))

 FIELDS
 {The actual length of the primary key depends on the questionnaire.}
 ThePrimKey : INTEGER[12], EMPTY
 InternalKey : INTEGER[8]
 DialDate : DATETYPE {date format = YYMMDD}
 DialTime: TIMETYPE
 CallNumber : 1..99
 DialNumber : 1..9
 WhoPhoned : STRING[10]
 EntryPrio : TEntryPrio
 DialResult : TDialResult
 ExitPrio : TExitPrio
 DialLineNr : 1..15
 AppointType : TAppointType, EMPTY
 ExitTime : TIMETYPE
 SecondsDial : INTEGER[8]
 SecondsInt : INTEGER[8]

ENDMODEL

Chapter 11: CATI Technical Details

580 Developer’s Guide

Using the following Manipula setup, you could convert the history file to a Blaise
data format:

SETTINGS
 DATEFORMAT = YYMMDD

 USES HISTORY 'history'

 { filename with extension BTH required for the INPUTFILE! }
 INPUTFILE histin: history (ASCII)
 SETTINGS
 SEPARATOR = ','

 OUTPUTFILE histout: history (BLAISE)

You can use the Database Browser to look at the file created by this setup. The
forms in the file can be displayed in order of the secondary key of the history data
model.

11.6 Glossary

The following is a list of the terms that can be of help in understanding CATI.

• Active day. An active day in a survey is a day on which interviewing will take
place. Active days are highlighted on the various calendars in the program.

• Appointment type. CATI distinguishes a number of appointment types. If a
respondent specifies a date and a time, we call this an appointment. In all
other cases, we use the term preference. The scheduler uses the various
appointment types for calling back respondents. Appointment types are no
preference, specific date and time), preference for a certain period with day
part, preference for a week day with day part, appointment with preference
for period, appointment with preference for a day in the week, and
appointment with preference for a day part.

• Busy dial. A busy dial is a dial that is performed when the number is busy. A
number of busy dials together form one dial. The idea is that a number that is
busy should quickly be dialled again, since there is a good chance to make
contact, as somebody seems to be on the line. But at some point it is wise to
stop dialling after a specified maximum number of busy dials. If this happens,
the number of dials for the telephone number is increased, and the system
tries to contact the number again later (unless the number has had the
maximum number of calls and no appointment has been set). Using busy dial
intervals, you can specify how long the scheduler has to wait between
consecutive busy dials.

 Chapter 11: CATI Technical Details

Developer's Guide 581

• Call. A call is a set of logically related dials. A maximum number of dials can
be performed for each call. This maximum is specified in the CATI
specification file. In principle, a telephone number can only be subjected to
one call on a given day. A number can have more than one call on a day, for
instance, if an appointment has been made for the same day. The maximum is
ignored if an appointment was made for the number.

• Counts file. The counts file contains counts on the status of the forms in the
Blaise file. It is used to display the summary and quotas in the CATI
Management Program. The file is created when a new daybatch is created,
and it is kept up to date by the CATI system. If you want to see the
summaries and the file is not present, you will be asked if it should be
created. This can be done only if no interviewing is going on. The file
extension is .btc.

• Daybatch. A daybatch is a file that contains only those forms for respondents
who can be contacted on a specific day in the survey period. You have to
create a daybatch in order to work with CATI.

• Day part. A day part is a row of consecutive intervals. Each day part is
bounded by two intervals. Internally, parts of the day are specified by the
interval numbers with which they begin and end. For instance, the day part
from 11:00 hours to 13:00 hours is bounded by intervals 133 (11:00-11:05
hours) and 156 (12:55-13:00 hours).

• Dial. A dial is the process of selecting a form and making it available to an
interviewer, who tries to get a respondent on the line. After the conclusion of
the dial, the form acquires a dial result.

• Dial result. A dial result is the result that has been registered for a dial. A dial
result determines what treatment should be given to a form selected by an
interviewer.

• Future priority. The future priority is the priority the number will have at the
time the scheduler gives it the Active status. This is the start time as stored in
the daybatch for this form. The future priority is established after the
conclusion of a dial and is stored in the daybatch.

• History file. The history file stores information on the dials made by the
interviewers and the supervisor. The extension of the file is .bth and it is
viewed by running the bthist.exe program.

• Interval. An interval is a unit of 5 minutes. CATI divides the day into 288
intervals (numbered from 1 to 288). Each interval is bounded by two times,
its starting time and its ending time. For example, interval 1 is bounded by

Chapter 11: CATI Technical Details

582 Developer’s Guide

00:00 and 00:05, interval 288 by 23:55 and 24:00, and interval 100 by 08:15
and 08:20. In CATI, all time operations are performed in intervals.

• Last possibility. The term last possibility applies to forms for which an
appointment with preference (not a hard appointment) has been made. For
numbers with a period appointment, the last possibility is the last day in the
appointment period. For numbers with a weekday appointment, the last
possibility is the last possible weekday for the appointment in the survey
period. For numbers with a day part appointment, the last possibility is the
last day in the survey period.

• Period. A period is a row of consecutive days in the survey period. The
period includes both the active and not-active days.

• Priority. The priority of the telephone numbers in a daybatch determines the
sequence in which the numbers will be presented to the interviewers. The
priority is only of importance for numbers with the active status. CATI
assigns a priority to telephone numbers based on the type of appointment that
has been made and whether the last dial result was a busy.

High-priority numbers are dealt with first. When an appointment has been set for
a specific date and time, its priority is always hard on the specific date. The
priority is soft when an appointment is set with preference for a period, unless it is
the last possibility to contact the respondent (in which case the priority is
medium). If a number has no appointment or has an appointment without
preference, or if previous dials have led to the result busy or no-answer, then the
priority is default. Finally, appointments that have been made by the supervisor
have the priority super. (See the table in the Assigning priorities, starting times,
and ending times section of this chapter.)

Scheduling
Scheduling is the method by which forms in the daybatch are made available to
be dialled. The part of the program that performs this function is called the
scheduler. The scheduler judges the priority and the status of the forms in the
daybatch and adjusts them if necessary.

Specification file
The CATI specification file is a file containing settings that define when and how
a survey should be executed. This includes, for example, the period of the survey,
the days on which interviews will be held, and the number of crews and
interviewers. This file also indicates which treatment must be given to telephone
numbers in certain situations, such as how many times a number must be called
back if it is busy or there is no answer. The specification file is created in the

 Chapter 11: CATI Technical Details

Developer's Guide 583

CATI Specification Program and has a .bts extension. You must have this file in
order to run the CATI Management Program and your CATI survey.

Status
The status refers to the status of the form in the daybatch. You can see the current
status of the telephone numbers in the daybatch in the CATI Management
Program. The status of a form can be being treated, busy, no-answer,
appointment, no need today, not-active, or active.

Supervisor
The supervisor is the person who takes care of a survey while interviewing is
going on. The supervisor is the one who creates the daybatch, solves problems
with the equipment, assists the interviewer with technical or equipment problems,
and talks to respondents who want to be contacted immediately and possibly
makes appointments with them.

Survey period
The survey period runs from the first to the last day of the survey. You specify the
survey period in the CATI specification file.

Time slice
Time slice is a mechanism to spread the dial attempts for default-priority cases
over time according to a user-defined scheme, based on days and day parts.

Time zones
A time zone is an area where the time is equal. Large areas or countries are
usually divided into a number of time zones, which usually, but not always, differ
by at least one hour. For example, the United States spans seven time zones. The
Blaise CATI system allows you to store time zone information, and the scheduler
takes into account the time difference between the interviewer’s location and the
respondent’s location. (See Chapter 10 for details on using time zones in your
survey.)

All times in CATI are stored in the respondent’s time. For example, if an
interviewer working in Washington, DC calls a respondent in Denver, CO, the
time in Denver is two hours earlier than the time in Washington. If the
interviewer makes an appointment for 16:00 hours (4:00 p.m.), then 16:00 hours
is stored in the appointment information of the survey. The scheduler will take
this two-hour time difference into account, making sure that the form is delivered
at the correct time.

Chapter 11: CATI Technical Details

584 Developer’s Guide

When supervisors are viewing case information using BtMana or interviewers are
viewing Case Summary information before running the data entry program, all
times are automatically converted by Blaise into interviewer time.

Treatment types
The CATI system distinguishes a number of treatment types, which are applied to
forms based on the dial result. Blaise recognises the treatments no-answer, busy,
and appointment. Forms with the other dial results—disconnected, other,
response, and nonresponse—are considered concluded, and therefore no
treatment is needed. Treatments are assigned in the CATI Specification Program
and in the data model.

Developer's Guide 585

Appendix A: Command Line Parameters

This appendix lists command line parameters in Blaise®. Command line
parameters govern the way each system component works when it is run. These
programs can be run from Maniplus, or from a Windows® batch process such as
VBScript or Jscript using the Windows® Script Host capability, or from other
commercially-available batch utilities such as WinBatch™.

Command line prepare utility (B4CPars.exe)

Command Line Parameter Description

<file-name> Set <file-name> as data model or
Manipula/Maniplus setup or project
file to prepare
This program supports wild cards. For
instance B4CPars *.bla will prepare
all .bla files.

/A<+|-> Wait for key at end. Default /A-

/C<+|-> Check layout identifiers. Default /C-

/H<foldername[;...]> Set meta search path

/M<modelibrary> Set mode library name

/O<foldername> Set output folder

/Q<+|-> Run parser in quiet mode. Default
/Q-

/S<foldername[;...]> Set include file search path

/T<option-file> File with options

/U<metaname[,metaname]> Set meta names for uses

/W<foldername> Set working folder

/X<+|-> Sets optimized checking on/off.
Default is /X+.

@<filename> Prepares all files named in
<filename>

Appendix A: Command Line Parameters

586 Blaise 4.5

Cameleon (cameleon.exe)

Command Line Parameter Description

<file-name> Set <file-name> as script to process.

/B Suppress all dialogs and never wait
for a user key press.

/D<file-name> Set <file-name> as name of the data
model to use.

/H<folder[;folder]> Set meta search path.

/P<parameter[;parameter]> Set parameters.

/T<folder> Set <folder> as write-to folder.

/W<folder> Set <folder> as working folder.

CATI Emulator (btemula.exe)

Command Line Parameter Description

<file-name> Set <file-name> as emulator option file to
use.

/H<folder[;folder]> Set meta search path.

/E<folder[;folder]> Set external file search path.

/W<folder> Set <folder> as working folder.

CATI Management Program (btmana.exe)

Command Line Parameter Description

<file-name> Set <file-name> as CATI specification to use.

/B Create daybatch in batch mode.

/BN Create a daybatch for the next defined
survey day.

/H<folder[;folder]> Set meta search path.

/P<password> Use <password> to create daybatch (if
applicable).

/W<folder> Set <folder> as working folder.

 Appendix A: Command Line Parameters

Developer's Guide 587

CATI Specification Program (btspec.exe)

Command Line Parameter Description

<file-name> Set <file-name> as CATI specification to use.

/H<folder[;folder]> Set meta search path.

/W<folder> Set <folder> as working folder.

Control Centre (blaise.exe)

Command Line Parameter Description

<file-name> Open <file-name> in the Control Centre.

Data Entry Program (dep.exe)

In addition to the usual command line approach for passing parameters to an
application, described below, Dep supports Blaise® command line option (.bcf)
files, also called the @-option. All the command line options for a process are set
in a text file, for example, myparms.bcf, and invoked with Dep.

Dep @myparms.bcf

Command line files are described in the next section of this appendix.

Command Line Parameter Description
<file-name> Set <file-name> as data model to use.

/B Open in Browse Forms mode.

/C<file-name> Read configuration file <file-name>.

/D Disable CATI (if applicable).

/E<folder[;folder]> Set external file search path.

/F<file-name> Use <file-name> as main data file.

Appendix A: Command Line Parameters

588 Blaise 4.5

Command Line Parameter Description
/G Open in Get Form mode. When used with /K, reads

information from /K.

When using /G in combination with the command line option
/Y<filter> (the form status filter option) the DEP will load
automatically the first form that complies with the specified
filter. It is possible to leave the filter empty. In this case the
first available form in the database will be loaded. This
functionality is available only if you don’t specify the value of
a key on the command line (so the option /K is not present).

Example: DEP LFS00A /G /YDS will load the first available
dirty or suspect form.

/H<folder[;folder]> Set meta search path.

/J Open with form with given join ID only. Used only in
combination with /K.

/K<key-value> Get the first form with the <key-value> for the primary key or
internal key (see also /G, /J, and /N).

/L<number> Set interview language as <ID number>. The default is 1.

/M<file-name> Read the menu file <file-name>. The default is
depmenu.bwm, or catimenu.bwm in case of CATI.

/N Open and create a form with given key. Used only in
combination with /K.

/O Disable image link.

/P<number> Use page layout <number> at start. The default is 1.

/R Run in read-only mode, editing disabled.

/RE Run in read-only mode, but allow edit to experiment with
form.

/S<parallel-name> Go directly to the specified parallel when entering the form.
This option will only work when the key page is not activated
when starting the DEP and when the specified parallel can
be reached.

/T<number> Use behaviour toggles <number> at start. The default is 1.

/W<folder> Use <folder> as working folder.

/X Exit DEP after editing the first form.

/Y<cdsn> Form types filter. <cdsn> is any combination of the letters
c=Clean, d=Dirty, s=Suspect, n=Not checked.

/Z Go directly to last field on the route that needs to be
answered. This option is similar to pressing the END key
directly after loading a form.

/! Activate the watch window.

@<filename> Start with command line option file (see section A.1)

 Appendix A: Command Line Parameters

Developer's Guide 589

Hospital (hospital.exe)

Command Line Parameter Description

<file-name> Set <file-name> as script to process.

/C Check the data file in batch mode.

/H<folder[;folder]> Set meta search path.

/L<diagnose log-file> Set diagnose log file

/M<file-name> Set <file-name> as data model to use.

/R Rebuild the data file in batch mode.

/W<folder> Set <folder> as working folder.

Manipula/Maniplus (manipula.exe)

In addition to the usual command line approach for passing parameters to an
application, described below, Manipula supports Blaise command line option
(.bcf) files, also called the @-option. All the command line options for a process
are set in a text file, for example, myparms.bcf, and invoked with Manipula.

Manipula @myparms.bcf

Appendix A: Command Line Parameters

590 Blaise 4.5

Command line files are described in the next section of this appendix.

Command Line
Parameter

Description

<file-name> Set <file-name> as setup to use.

/A Wait for key at end.

/B Never wait for a key press.

/C<file-name> Read configuration file <file-name> instead of the default
manipula.miw.

/D<file-name> Set <file-name> as day file.

/E<folder> Set the path to search for external data files used during
checkrules. Path only applies to external files with no path
specified. This command line option is similar to the /E
command line option of the data entry program. The system
will also search the folder specified by the /F parameter (the
read-from folder) when needed.

/F<folder> Set <folder> as read-from folder.

/H<folder[;folder]> Set meta search path.

/I<file-name[,file-name]> Set input and update file name(s).

/M<file-name> Set <file-name> as parameter file.

/O<file-name[,file-name]> Set output file name(s).

/P<parameter[;parameter]> Set parameters.

/Q Run in quiet mode.

/R<file-name> Set <file-name> as message file.

/T<folder> Set <folder> as write-to folder.

/W<folder> Set <folder> as working folder.

/X<folder> Set <folder> as temporary sort file folder.

/! Activate the watch window.

@<filename> Start with command line option file (see section A.1)

Blaise Command Line Option Files

To solve problems with very long command lines, the DEP and Manipula both
support Blaise command line option (.bcf) files. This option is also called the
@-option. The @-option requires a file name:

 Appendix A: Command Line Parameters

Developer's Guide 591

@<file-name>…

With the @-option you instruct the system to read the different command line
options from the named command line option file <file-name>. This command
line option file has an ini-file structure. All DEP and Manipula command line
option are listed below.

Creating a Blaise command line option file
An easy way to create or change a Blaise command line option file is by making
use of the Run parameters dialog in the Blaise Control Centre. This dialog can be
used as an editor for a Blaise command line option file. With the load button you
can read the values store in such a file and with the store button you can write
such a file.

To edit the Data Entry options you need to focus the Data Entry tab. When this
tab is focussed pressing the store button will prompt you for a file name and after
providing that name all current Data Entry options will be stored in the named
command line option file. Using the load button will read all Data Entry options
from a named option file.

To edit the Manipula options you need to focus the Manipula tab. When this tab
is focussed pressing the store button will prompt you for a file name and after
providing that name all current Manipula options will be stored in the named
command line option file. Using the load button will read all Manipula options
from a named option file.

The current value of the meta search path in the Project options dialog will also
be stored. Based on the setting of the working folder in the project options dialog,
the name of the primary file (if applicable) or the file name corresponding with
the currently focussed MDI window, the system will determine the value of the
working folder. This value will also be stored.

Here is an example to illustrate its use. Suppose you want to execute the
following command:

DEP c:\mymeta\example /fc:\mydata\example /mc:\misc\demo.bwm /x

This is equivalent to executing DEP @example.bcf where example.bcf
looks as follows:

Appendix A: Command Line Parameters

592 Blaise 4.5

[DepCmd]
DataModel=c:\mymeta\example
DataFile=c:\mydata\example
MenuFile=c:\misc\demo.bwm
ExitDep=1

The @-option can be mixed with normal command line options. For instance:

DEP @example.bcf /mc:\misc\other.bwm

In this example the DEP will use the menu file mentioned on the command line.

Important: The command line options are evaluated from left to right. If an option
is present on the command line and also in the option file the last value
encountered will be used.

So:

DEP /mc:\misc\other.bwm @example.bcf

will use the menu file mentioned in example.bcf if present. If the menu file is
not specified in example.bcf the name specified on the command line will be
used.

If you do not specify an extension the default extension .bcf (Blaise Command
line option File) will be used. So DEP @example.bcf is equivalent to DEP
@example.

The @-option is also supported by the CALL and the EDIT instruction/method in
Maniplus.

 Appendix A: Command Line Parameters

Developer's Guide 593

DEP syntax for Blaise Command Line Option File
Statement Description Command line

Parameter
[DepCmd] Declares that the following lines

contain commands used for
DEP.EXE

DataModel=<file-name> Set data model name to use

BrowseMode=0 or 1 Open in Browse Forms mode /B

ConfigFile=<file-name> Read ConfigFile instead of the
default dep.diw

/C

DisableCATI=0 or 1 Disable CATI (if applicable) /D

ExternalSearchPath=<folder[;folder]> Set external file search path /E

DataFile=<file-name> Use DataFileName as main data file
name

/F

GetMode=0 or 1 Open in Get Form mode. If available
reads information from Key=

/G

Language=<number> Active language number

MetaSearchPath=<folder[;folder]> Set meta search path /H

UseRecordNumber=0 or 1 Use Key = value as internal
recordnumber and open with that
form only

/J

Key=<key-value> Get the first form with the key value
for the primary key or internal
recordnumber. See also
UseRecordNumber, GetMode and
CreateForm

/K

Language=<number> Set interview language number. The
default is 1

/L

MenuFile=<file-name> Set the menu file name. The default
is depmenu.bwm, or catimenu.bwm
in case of CATI

/M

CreateForm=0 or 1 Create a form with given key and
open it. Use only in combination with
Key=

/N

LayoutSet=<number> Use page layout LayoutSet at start.
The default is 1

/P

DisableImageLink=0 or 1 Disable IMGLink (if applicable) /O

ReadOnly=0 or 1 Run in read only mode /R

Readonlyedit=0 or 1 Run in read only mode, but allow
edit of form without save

/RE

StartParallel=<Parallel-name> Set the parallel that needs to be
activated

/S

Appendix A: Command Line Parameters

594 Blaise 4.5

Statement Description Command line
Parameter

ToggleSet=<number> Use behaviour toggles ToggleSet at
start. The default is 1

/T

WorkFolder=<folder> Set WorkFolder as working folder /W

ExitDep=0 or 1 Exit DEP after editing the first from /X

SelectStatus= Set the records to select based on
the select status: C=Clean, D=Dirty,
S=Suspect, N=Notchecked

/Y

Watchwindow=0 or 1 Activate the watch window /!

GotoEnd=0 or 1 Same behaviour as pressing the
END key in a form

/Z

Manipula syntax for Blaise Command Line Option Files
Statement Description Command line

Parameter

[ManipulaCmd] Declares that the following lines
contain commands used for
MANIPULA.EXE

Setup=<file-name> Set the name of the setup to use

WaitForKey=0 or 1 Wait for key at end /A

BatchMode=0 or 1 Never wait for a key press /B

ConfigFile=<file-name> Read ConfigFile instead of the
default Manipula.miw

/C

DayFile=<file-name> Set day file name /D

ExternalSearchPath=<folder> Set external file search path /E

InputFolder=<folder> Set folder to read from /F

MetaSearchPath=<folder[;folder]> Set meta search path. /H

InputFile=<file-name[;file-name]> Set input and update filenames /I

OutputFile=<file-name[;file-name]> Set output filenames /O

Parameter=<parameter[;parmeter]> Set parameters /P

RunQuiet=0 or 1 Run in quiet mode /Q

MessageFile=<file-name> Set message file name /R

OutputFolder=<folder> Set folder to write to /T

WorkFolder=<folder> Set WorkFolder as working folder /W

Watchwindow=0 or 1 Activate the watch window /!

SortWorkFolder=<folder> Set folder for temporary sort files /X

Developer's Guide 595

Appendix B: Files in Blaise

This appendix describes the different kinds of files that are used in Blaise® and
provides some suggested folder structures. We use the National Commuter
Survey as an example, where NCS is used for instrument files and ncsdata is
used for the data files. The following types of files are discussed:

• Instrument files

• Blaise® data files

• External data files

• Configuration files

• Blaise® system files for stand-alone or remote operation

• Manipula files for stand-alone or remote operation

• Files for Maniplus stand-alone or remote operation

• Files for distribution for an application.

• Source code files

• Directory structures

• CATI files

Instrument Files

The following are the compiled instrument files.

Name Description Example

Meta information
file

Holds meta-information, data definition,
rules.

ncs.bmi

Data model file Screen layout information. ncs.bdm

Extended meta file Parallel text definitions ncs.bxi

Appendix B: Files in Blaise

596 Blaise 4.5

Blaise Data Files

The following Blaise data files are always present.

Name Description Example

Main data file Holds all Blaise data. ncsdata.bdb

Join key file Internal index file, generated by the
Blaise system.

ncsdata.bjk

Information file Internal file information file, generated
by the Blaise system when data files are
first created.

ncsdata.bfi

The following Blaise data files are not always present.

Name Description Example

Primary key file Index file based on primary key. ncsdata.bpk

Secondary key file Index file based on secondary keys. ncsdata.bsk

Remark file Remark file. ncsdata.brd

Remark index file Indexes remarks. ncsdata.bri

Trigram file Trigram data file. ncsdata.bdt

Trigram index file Indexes trigrams. ncsdata.bit

The remark files are created the first time a user makes a remark. The primary
key and secondary key files are created if primary or secondary keys are declared
in the data model. The trigram file and trigram index files are created if a
secondary key of type trigram is declared in the data model.

The following file can be created by the user in the Database Browser. The user
can select certain fields in a Blaise database to view, save that view to a file, and
then open the view file in the Database Browser.

Name Description Example

Database view file View of selected fields in the Database
Browser.

ncsview.bdv

 Appendix B: Files in Blaise

Developer's Guide 597

External Data Files

If the NCS instrument refers to externally held data, these are the external files
that would be required by the application.

Name Description Example

External meta file Holds external meta information. ncsext.bmi

External main data file Holds all external Blaise data. ncsext.bdb

External primary key file Index file based on primary key. ncsext.bpk

External join key file Internal key index file. ncsext.bjk

External information file Internal file information file. ncsext.bfi

External secondary key
file

Index file based on secondary
keys, used for lookups.

ncsext.bsk

External trigram file Data file for trigrams, used for
trigram lookups.

ncsext.bdt

External trigram index file Indexes trigrams, used for trigram
lookups.

ncsext.bit

If the external file will not be used for data entry purposes by other applications,
the external main data file (.bdb) can be flagged with the ReadOnly attribute.
This will speed up the input/output process on the external file.

DEP Customisation Files

These are customisation files that can be used to control the look and behaviour
of the DEP.

Name Description Example

Mode library Holds behaviour toggles, screen layout styles,
text, font, multimedia, and other behaviour
settings.

modelib.bml

ncslib.bml

Menu file Determines the menu options, short-cut keys,
and speed buttons available for the DEP user.

depmenu.bwm

ncsmenu.bwm

DEP
configuration
file

Holds behaviour toggles, text and font
enhancements, multimedia, and other behaviour
settings. When applied, settings here override
the settings in the mode library file under which
the data model was prepared.

dep.diw

ncs.diw

Appendix B: Files in Blaise

598 Blaise 4.5

Note that these files can have their own names, specific to a project. It is not
unusual to invoke one modelib file for data collection and another for data
editing. The same can be said for the menu and configuration files. You can
create different .diw files for different screen resolutions on different computers.

Data Entry Program Files for Stand-alone or Remote Operation

Name File

Data Entry Program dep.exe

Data Entry Program Help dep.hlp

Manipula/Maniplus Files for Stand-alone or Remote Operation

Name File
Manipula manipula.exe

Application-specific compiled setup files compiled from Manipula/Maniplus
programs are files with the .msu extension. These are used with manipula.exe.
If there was a change to the meta information file that was used, be sure to re-
prepare any .msu files.

For Maniplus setup files, the following extra files might be needed:

Name File

Help for Data Entry
Program

Dep.hlp is required only if you
use EDIT in the setup.

Nested setups <setup-file>.msu

Files for Distribution for an Application

If you are running an application on laptops or on a local area network, the
laptops and network do not need all system files that come with the Blaise
distribution. Files that are needed for distribution to a remote site include:

 Appendix B: Files in Blaise

Developer's Guide 599

• The appropriate Data Entry Program, Manipula, and Maniplus files
mentioned above. When you perform all data entry/interviewing through EDIT
in Maniplus setups, you don’t need to install the dep.exe.

• Instrument files mentioned above.

• External files mentioned above (some might not exist, such as the trigram
files, if they are not part of the application).

• Data files if they are pre-loaded. Otherwise, the system will create them when
the instrument is first invoked.

• The compiled menu file (such as depmenu.bwm) and the Data Entry Program
configuration file dep.diw. There is no need to send the mode library file to
a remote location because it affects the instrument during preparation only.

Source Code Files

Name Description Example
Master file Starts with DATAMODEL and ends with

ENDMODEL.
ncs.bla

Included files Any file that is brought into the instrument with an
INCLUDE statement.

secta.inc

Procedure files Include file that holds a Blaise procedure. m_of_n.prc
Library file A file that holds type definitions. Starts with LIBRARY

and ends with ENDLIBRARY. Needs to be prepared
to a .bli file.

ncs.lib

Note that the extensions are suggestions only and are not syntactically required. It
is preferable to keep extensions of kinds of files distinct so that they can be
distinguished easily.

Appendix B: Files in Blaise

600 Blaise 4.5

Folder Structures

For an application, keep a folder structure that helps organise all the files. For
example:

Folder Structure Use
Ncs\Source Application-specific master and INCLUDE files.
 \Inst Compiled instrument files.
 \Data Production data files.
 \Pracdata Practice data files.
 \Extern External information.
 \Manipula Manipula and Maniplus files.
 \Bat Batch files.
Blib\Genblock Organisation-wide general blocks.
 \Typelib Organisation-wide general types.
 \Genproc Organisation-wide Blaise procedures.

 Appendix B: Files in Blaise

Developer's Guide 601

CATI Call Management System Files

The CATI Call Management System produces its own set of files:

Name Description Example

Daybatch Holds all daybatch information. ncsdata.btd

Daybatch index Daybatch index. ncsdata.bti

Specification file All CATI survey specification parameters.
Includes the dial menu, interviewer and group
names, valid days of the survey, time zone
definitions, and so on.

ncsdata.bts

History file Keeps track of all call and dial attempts. ncsdata.bth

Counts file Keeps track of all counts. ncsdata.btc

Log File The system uses this log file to write
messages about occurring events that might
be relevant for the CATI management system,
like the start of an interviewer session, the
creation of a daybatch, the occurrence of error
situations and the end of a session.

ncsdata.log

Daybatch ASCII ASCII representation of the binary daybatch
file above. This file is generated only if the
View daybatch, Browse has been invoked in
the CATI Management Program.

ncsdata.tdb

The .bts file, which holds all CATI definition parameters, can be used from
one survey to the next. This saves the trouble of re-entering all the information
that is used from survey to survey.

602 Blaise 4.5

Developer's Guide 603

Index

A

ACTIVELANGUAGE
Key word · 145

Advanced Manipula · 399
AFTER

Location key word · 264
ALIEN

DLL key word · 237
Alien procedure · 236, 237, 238
Alien router · 237, 238, 287

Used with DLL · 236
Alphabetic search

As lookup · 227
Use of · 228

AND
Key word · 124

Answer attributes · 93
Block level · 96
Data model level · 96
Don't know · 93
Empty · 93
Refusal · 93

Appointments
Blocks in data model · 185, 190, 191
Disabling default appointment dialog · 529
Hard · 564, 569
Making in DEP · 485
Parameters in CATI specification file · 508
Preference · 564, 569, 580
Viewing in CATI Management Program · 539

Arithmetical expressions · 124
Examples of · 123

ARRAY
Key word · 88, 158

Array methods
DELETE · 183
EXCHANGE · 183
For blocks · 183
INSERT · 183

Arrays · 158
Of blocks · 195
Performance issues · 200

ASCII
Key word in Manipula · 381

ASCIIRELATIONAL
Key word in Manipula · 381

ASCIIRelational files · 367, 378, 437
ASK

Key word · 108
Assignments · See Computations
AT

Location key word · 264
ATTRIBUTES

Key word · 96
Audio-CASI · See Multimedia
Audit trail · 238, 247

Audit trail DLL · 239, 288
Contents of · 246
Date and time stamp · 241
Invoking · 288
Mode library file settings · 245
Processed by Manipula · 247
Recording user actions · 240
Requirements · 239
Summary of · 247
Turning on and off · 247
Uses of · 238

AUTOCOPY
Key word · 377, 450

AUTOREAD · 410
Key word · 377

Auxfields · 102, 399
Compared with locals and fields · 106
Examples of · 102
Mixing with FIELDS section · 103
Placement for good performance · 199
Used as label · 103
Uses of · 102

AUXFIELDS
Key word · 102, 379

Auxfields section · 102. See also Auxfields
Auxiliary fields · See Auxfields

B

B4CPars.exe · 42, 585

Index

604 Blaise 4.5

bdv file (saving a view in Database Browser) · 55,
596

BEFORE
Location key word · 264

BLAISE
Key word · 378

Blaise data files
Compatibility · 147

Causes of incompatibility · 148
Methods to handle incompatibility · 149

Exporting blocks of · 437
Extending using Manipula · 385
Importing blocks of · 428
Initialising · 385, 499
Reformatting with Manipula · 420
Updating data definition with Manipula · 150
Viewing · 50, 55, 596

Blaise language · See also The Reference Manual
Key words · 61
Overview of · 59

BLAISEUSER
Environment variable · 417, 517

BLOCK
Key word · 155

BLOCKEND
Location key word · 264

Blocks · 67, 153
Administrative · 185, 190, 197
Appointment · 185, 190
Array methods for · 183
Arrayed · 158, 195, 197
As field type · 67, 90, 157
As included files · 173
Block computations · 182, 412
Block history · 409
Child · 165, 166
Dot notation in · 157, 161
Embedded · 439
Enumerated instances of · 159
For testing · 153, 167
Making EMPTY with block computation ·

184
Management · 185
Manipula and · 154
Menus as alternative to parallel blocks · 193
Multiple separate · 162, 163
Naming · 157, 162

Block field name · 156
Block type name · 156

Nested · 164, 166, 195
Nonresponse · 185, 188
Parallel · See Parallel blocks
Parameters in · 167, 169, 193

Parent · 165
Passing information to · 161, 162
Protecting from change · 181
Selective checking and · 198
Syntax · 155
Text at block level · 160, 161, 199
Uses of · 153

BLOCKSTART
Location key word · 264

C

Cameleon · 9, 453, 458
Blocks as basis for · 154
Command line parameters · 586
Examples · 468
Manipula and · 454
Meta information files and · 453
Output samples · 460

Param.cif · 471
SAS.CIF · 463
SPSSPC.CIF · 460

Programming · 465
Basic concepts · 466
Meta data loops · 473

Run parameters · 459
Running · 457
Translators supplied with Blaise · 456
Use of text as field description · 71

CARDINAL function · 81
CASE OF

Structure in Manipula · 384
CATI Call Management System · 477. See also

CATI Management Program; CATI
Specification Program
Blaise CATI concepts · 478
Call scheduler · 565

Activating forms · 571
Assigning priorities · 481, 568, 582
Assigning statuses · 481
Future priority · 581
Routing back forms · 567, 571

CATI Management Program · See CATI
Management Program

CATI specification program · See CATI
Specification Program

CATI terminology · 580
Technical details · 563
Time slices · 491, 583
Treatment types · 573

Appointment · 575

 Index

Developer's Guide 605

Busy · 574
Exceptions to general rules · 575
No answer · 573, 584

CATI data models · 490, 551
Blocks in · 490, 498

Appointment · 497, 498, 553
TAppMana · 491
TCallMana · 491, 510
TSliceMana · 491

CAPI compatibility · 557, 558
CATI menu · 344, 489. See also Menu file
Disabling CATI mode · 349, 558
Fields in · 493

Quota · 496
Telephone · 553

Files needed for · 576
INHERIT CATI · 490, 553
Initialising · 499, 553
Quotas · 483
Running in the DEP · 483, 556

Appointments · 485, 487, 488
Dial screen · 484

Testing · 559
CATI Emulator · 419, 559

Command line parameters · 586
Manipula to produce a script · 247

CATI Management Program · 533, 555
Command line parameters · 586
Daybatch · 559

Browsing · 541
Creating · 535
Rules for inclusion in · 563
Scheduling · 541
Setting parameters · 507, 530, 533
Viewing · 536, 537, 542

Forms · 543, 566, 567
Activating · 541
Selecting for further treatment · 544

History file · 547, 577, 581
Log file · 550
Running outside the Control Centre · 550
Setting environment options · 546
Summary of calls · 542
Viewing active interviewers · 546
Viewing appointments · 539

CATI Specification Program · 500, 555
CATI specification file · 582
Command line parameters · 587
Defining · 501

Crews · 505
Daybatch select · 530
Daybatch sort · 533
Dial menu · 511

Field selection · 513, 517
Interviewers and groups · 520
Parallel blocks · 528
Quotas · 525, 528
Survey days · 503
Time slices · 523
Time zones · 522

CHECK
Key word · 60, 120

Checks · 120, 121
Child block · See Blocks, child
Classification type · 205, 206

Building · 208
Classify methods · 210
Descriptive text in · 207
Dynamic coding frame · 209
Level names · 209
Use of Manipula to build · 208

CLASSIFY
Key word · 210

Classify methods · 206, 210
CLASSTOSTR

Key word · 213
Coding

Coding dialog · 211
Controlling size and location · 212
Using · 210, 212

From an open question · 212
Hierarchical coding · 205

Accessing external data based on code ·
213

Classification · See Classification type
Classification fields · 88
Classify method · 210
Converting code to string · 213
Used in combination with lookups · 232

Types of · 205
Using lookups · 230

Command line parameters · 585
Command line prepare utility · 42, 585
Computations · 132

Compute instruction · 67
Dates and · 86
Definition of · 132
Enumerated fields and · 78
Fields as expressions · 132
Location in rules section · 132
String fields and · 74

Compute instruction · See Computations
Concurrent interviewing

Through parallel blocks · 191
Conditional rules · 113

Defining · 113

Index

606 Blaise 4.5

Edit checks in · 114
Involving fields · 120

ELSE instruction in · 114
ELSE-IF instruction in · 115
Error text in · 119
Fields listed in · 117
IF condition in · 113
Route instructions in · 113
Specifying other choice · 116

CONNECT
Key word · 395, 446, 450

Control Centre · 7, 18
Command line parameters · 587
Configuring the Tools menu · 32, 34
Data file management · 31
Database Browser · See Database Browser
File types in · 9
Opening files · 9
Setting environment options · 15, 47, 56
Structure Browser · See Structure Browser
Text editor · 11

Opening files · 10
Shortcut keys · 12

Viewing file history list · 10

D

Data Entry Program · 267
Behaviour modes · 274, 275, 276

Checking · 275
Defining · 276
Error reporting · 275
Mode library file settings · 282, 292. See

also Mode library file
Routing · 274

CATI data models and · See CATI data
models, Running in the DEP

Command line parameters · 587
Customising · 268, 277, 281, 331, 346. See

also DEP configuration file; Mode library
file; Menu file; Data Entry Program,
Screen design

FieldPane · 271
FormPane · 269
Grid · 270
InfoPane · 272
Page · See FormPane
Run parameters · 347
Running outside the Control Centre · 364
Screen design · 267, 277. See also Mode

library file; Menu file

Common screen layout tasks · 317, 319,
322

Examples · 259, 317
Layout section in data model · 259, 346.

See also Layout section
Moving horizontal dividing line · 346
Screen layout factors · 345, 346
Screen resolution · 100, 346

Speedbar · 273, 336, 343
Using · 350

Browse forms · 357
Don't know · 355
Entering responses · 353
Error viewing · 360, 361, 362
Get form · 357
Invoking a behaviour mode · 351, 352
Multimedia · 363
Navigating between forms · 357
Refusal · 355
Remarks · 355
Shortcut keys · 354
Start asker · 357
Sub forms · 356. See also Parallel blocks
Switching languages · 362

Window components · 268, 273
Data export · 437

Blocks as unit for · 154
Manipula and · 367. See also Manipula setups

Data import · 428, 430, 434
Data models · 9, 59

Auxfields section · 102
Creating organisation in · 156, 199
Describing an external file · 216
Examples and supporting files · 151, 202
External · See External files
Extracting a mode library file · 324
Fields section · 70. See also Fields; Fields

section
Hierarchical · 67, 195

Blocks as basis · 153
Included files · 9. See also Included files
Layout section · 259. See also Layout section
Locals section · 104
Mini-data models · 153, 182
Placement of edit checks in · 125
Preparing · 18, 324
Properties

Specifying text for parallel blocks · 193,
327

Rules section · 107. See also Rules
Running · 21
Settings section · 139. See also Settings

section

 Index

Developer's Guide 607

Tab stops in · 100
Text enhancements in · 284. See also Text

enhancements
Type section · 74, 88. See also Types

Data recovery
Hospital utility · 40
Using audit trail · 239, 247

Data storage
Blocks as unit for · 154

Database Browser · 50, 297
Detail panel · 51
Opening · 51
Record filter · 54
Saving a view · 55, 596
Searching on keys · 52
Selecting fields to view · 54
Setting options · 56

DATAMODEL
Key word · 61

Date formats in Blaise · 85
DATETYPE

Key word · 85
DELETE

Array method · 183
DEP configuration file · 277, 331, 333

Applying · 277, 335
Editing · 332, 335
Mode library file and · 280, 332, 345

DEP Configuration Program · 331, 332
Opening a configuration file · 333
Opening a data model · 333

DITTO
Key word · 201

Ditto function · 201, 294
DK

Key word · See DONTKNOW
DLLs

Alien procedure · 237
Executing DLL procedure · 238

Alien router · 237, 238
Audit trail DLL · 239
Procedures and · 147
Referencing · 237
Requirements for Blaise · 237
Uses of · 236

DO · See FOR loop
DONTKNOW · 93, 95

In IF condition · 94
Stored as status · 94

Dot notation · 101, 107, 147, 157
For nested blocks · 165
In IF condition · 166
To reference field or auxfield in a block · 161

Used with type libraries · 91
DUMMY

In tables · 178
Key word · 137
Key word in layout section · 264
Multiple in a row · 137

DYNAMIC
Classification type key word · 209

dynamic type · 83, 93

E

Edit checks · 60, 63, 120
Adding or deleting edits · 128, 130
Arithmetical expression · 123
Between different blocks · 163, 200
Checks · 121
Defining · 121, 122
ERROR function · 123
In conditional rules · 114
INVOLVING function in · 127
Manipula and · 369
Placement in data model · 125
Rules for use of · 127, 128
Rules of precedence of operators · 125
Signals · 121
Simple edits · 124
String expressions · 124
Toggling edit severity · 131
Use of procedure to implement · 233
Variable text fills in · 126

Edit Jump Dialog · 72
ELSE

Key word · 114
ELSEIF

Key word · 115
EMBEDDED

Key word · 439, 440
EMPTY · 75

Answer attribute key word · 93
In IF condition · 94
Suggested use of · 94

ENDBLOCK
Keyword · 155

ENDDO · See FOR loop
ENDIF

Key word · 113
ENDMODEL

Key word · 61
ENDPROCEDURE

Key word · 233

Index

608 Blaise 4.5

ENDTABLE
Key word · 176

Environment settings in Windows registry · 417
ENVVAR

Environment variable function · 418
ERROR

Alternative edit check declaration · 123
Multimedia key word · 249

Error text
In CHECK and SIGNAL · 119
In IF conditions · 119
Variable text · 126

ERRORCOUNT
Key word · 408

Errors · See also Data Entry Program; Edit
checks
Default · 120
Hard · 120
Soft · 120

Example files · 5
Examples

Cameleon · 466, 468
Parameters · 468
WesVar.CIF · 468

CATI data model · 551
Data models · 9, 151, 202, 454
Help files · 258
Manipula · 372, 384, 398, 424, 450

EXCHANGE
Array method · 183

EXPORT
Key word · 170

Export parameters · See Parameters
External files · 214, 219, 224

Converting to Blaise format · 215
Data file as · 214, 217
Data model as · 214, 215, 217
Data model to describe · 216
Externals section · 215, 217, 218
File methods · 220

OPEN · 223
READ · 215, 222
RESULT · 223
SEARCH · 215, 220

Memory considerations · 224
Multiple files · 224
Placement for good performance · 199
Requirements · 213, 214
Restricting external fields · 219
Searching for a record · 220
Switching between files with OPEN · 223
Uses of · 214, 223
Uses section · 215, 217, 218

EXTERNALS
Key word · 215

Externals section · 215. See also External files

F

Field tag · 73. See also Fields
FieldPane · 271

Defining screen layout possibilities · 262
Grid and · 304
Mode library file settings · 278, 306

FIELDPANE
Layout style key word · 264

Fields · 61, 62, 69
Answer attributes · 93
Arrayed · 88
As expressions · 132
As topic identifier in WinHelp · 255
Classification · 88
Compared with locals and auxfields · 106
Date · 85

DeltaDate notation · 86
Decimal · 77
Enumerated · 62, 78, 79

Making assignments · 78
Type compatability · 79
Values of · 81

Field definition · 59
Field descriptions · 71
Field tag · 73
Field text · 71, 72

New line in · 98
Integer · 76
Listing together · 73
Naming · 70, 71
Numeric · 62, 77
Open · 75, 76
Preventing return to field · 109
Real · See Fields, Decimal
Route field methods · 107
Set · 80

CARDINAL function in · 81
Direct assignment · 83
Elements used in a fill · 83
IN notation used with · 81
In type section · 90
Referring to a specific element · 81, 83
Testing for an item · 81
Type compatibility · 82
Values stored · 81

Statuses · 94, 133

 Index

Developer's Guide 609

String · 62, 74, 124
As open type · 76
Functions · 75
Maximum size of · 74

Text · See Text enhancements
Text fills in · 101
Time · 87
Types of · 74. See also individual listings in

Fields
FIELDS

Keyword · 62
Fields section · 62, 70. See also Fields

Included files in · 175
File methods

For external files · 220
Manipula and · 403

Files in Blaise · 595
Blaise data files · 596
CATI Call Management System · 601
DEP customisation files · 277, 597
DEP files for stand-alone or remote operation

· 598
 · 146, 193, 328, 329, 331, 595
External data files · 597
File name extensions · 175
Folder structures · 600
For distribution for an application · 598
Instrument files · 595
Manipula/Maniplus for stand-alone or remote

operation · 598
Meta information files · 9, 18

Cameleon and · 453
Data model · 18, 453, 501
Libraries · 18
Manipula · 18
Mode library file and · 279

Prepared files · 18
Project files · 27
Source code files · 18, 599

Filters
In Database Browser · 54
In Manipula · 448

FIXED
Key word · 379
Key word in Manipula · 381

Fonts · See Text enhancements; Data Entry
Program; Mode library file

FOR loop · 134
In Manipula · 383
Local as control variable · 104
To define edit over instances of block · 163

FormPane · 269
Data density in · 154, 345

Labelling using auxfields · 103
Mode library file settings · 278

FORMSTATUS
Manipula key word · 408

FROM TO
Location key word · 264

Functions · 146
Examples of · 146
Handling of generated errors · 147
String fields · 75

G

Good programming practices · 93, 105, 116, 150,
201

Graphics · See Multimedia
Grid · 270, 300

Defining screen layout possibilities · 262
FieldPane and · 304
Mode library file settings · 278, 300, 305

GRID
Layout style key word · 264

H

HALT
Key word · 414

Hard error · See Checks
Help

Blaise help · 57
Context-sensitive in data model · 11
Mode library file settings · 288, 295
Question-by-question · 143, 254

Blaise language for · 258
Using WinHelp · 255, 256

Topic identifiers used with WinHelp · 255
Hierarchical coding · See Coding
Hierarchical data models · See Data models
Hospital utility · 40, 447

Command line parameters · 589

I

IF condition · 70, 113
Error text in · 119
Example of · 63
In Manipula · 383

IMAGE

Index

610 Blaise 4.5

Multimedia key word · 248, 249
IMPORT

Key word · 170
Import parameters · See Parameters
IN

Used with enumerated fields · 78
Used with set fields · 81

INCLUDE · 90
Key word · 153, 173

Included files · 173
Advantages of · 173
Include statement

At section level · 174
For multiple languages · 175
Format of · 173
Incorporating blocks into data model · 153
Multiple in one file · 174
Nested in included files · 174

InfoPane · 272
Defining screen layout possibilities · 262
Mode library file settings · 278, 309

INFOPANE
Layout style key word · 264

INPUTFILE
Key word in Manipula · 381

INSERT
Array method · 183

INTEGER
Key word · 77

Internal parameters · See Parameters
INVOLVING

Key word · 120, 127

J

Join ID · 348, 588

K

KEEP · 108
Applied to block level · 181
Protecting blocks and tables from change ·

181
Used for time stamp · 88, 109

KEEPALL
Key word · 403

Keys · See Primary key; Secondary key

L

Label in FormPane · 103
Languages · 142

Defining in data model · 142, 144, 145
Help

As topic identifier for WinHelp · 255
Blaise help language · 257
Question-by-question help · 143

In question text · 72
Multimedia · See Multimedia
Role of INCLUDE · 175
Switching between · 252

Defining in data model · 144
In Data Entry Program · 145

Testing for current language · 145
TLanguage · 144

LAYOUT
Key word in data model · 263
Key word in Tables · 178

Layout section · 259
Implementing · 263
In data model · 259
Layout style key words · 264

FIELDPANE · 264
GRID · 264
INFOPANE · 264
Location key words and · 265

Layout styles · 262
Default · 264
Naming · 263
Types of · 262

Location key words · 264
AFTER · 264
AT · 264
BEFORE · 264
BLOCKEND · 264
BLOCKSTART · 264
FROM TO · 264
Layout style key words and · 265

Mode library file and · 262, 263, 301
Layout style key words · See Layout section
LIBRARY

Key word · 91
Linking files · 401
Locals · 104

Compared with fields and auxfields · 106
Control variable in a loop · 134
Placement for good performance · 199
Scope of · 105
Uses of · 104, 200

LOCALS · 69

 Index

Developer's Guide 611

Key word · 104
Location key words · See Layout section
Lookups · 224

Alphabetic search · 227
External lookup file · 225
For coding · 230
Hierarchical coding and · 232
Keys in the external lookup file · 226
Starting value for · 231
Switching between keys · 228
Trigram search · 227
Use of combined keys · 228
Uses of · 225
Verifying coding entries · 230

Looping
Local as control variable · 134
Through edit checks · 136
Through rules · 134

M

Maniplus · 3
Manipula · 9, 154, 367

Basic operation of · 377
Cameleon and · 454
Command line parameters · 416, 587, 590
Creating a setup · 369
Default settings · 377
Environment variables · 417
Example file structures · 404, 405, 407
File formats supported · 378
Filters in · 448
Improving performance · 445, 446, 448, 449,

450
LAN issues · 418

ACCESS · 418
BTEmula · 419
Concurrent tasks · 420
ONLOCK · 419

Manipula Wizard · 35, 370
Run parameters · 373
Running as a separate program · 397
Stopping · 414

HALT · 414
PAUSE · 415
READY · 414

Use to build classification type · 208
Uses of · 368, 444

Classification · 445
Exporting a data file · 386
Extending a data file · 385

Initialising a data file · 385
Test data set · 444

Manipula setups
AUTOCOPY=NO · 450
AUTOREAD · 410
Auxfields section · 388
Block computations · 412, 449
Block history · 409
CONNECT=NO · 450
Counting forms · 409
Date and time stamps · 391
Debugging · 415
Environment variables

ENVVAR · 418
USERNAME · 417

Exits from loops · 413
Exporting data · 437

ASCIIRelational files · 437, 444
Blocks of data · 442
Embedded and ordinary blocks · 439

File methods
KEEP · 403
KEEPALL · 403
WRITE · 403
WRITEALL · 403

Form correctness status · 408
ERRORCOUNT · 408
SELECTSTATUS · 408
SUPPRESSCOUNT · 408

Functions in · 413
Importing data · 428

Data in one file · 428
Data in separate files · 430
Two ASCII files at the same time · 434
Two ASCII files in two stages · 430

Input file section · 381
Linking files · 401

Blaise files as link files · 402
Dynamic link · 401
Static link · 401

Manipulate section · 377, 382, 407
CASE OF statements · 384
Control structures · 383
Expressions · 383
Functions · 383
Multiple manipulate sections · 384

Message file · 402
Output file section · 382
Preparing · 372
Print section · 390
Procedures in · 411

DLLs · 412
Manipula procedures · 411

Index

612 Blaise 4.5

Prologue section · 399
Reformatting files · 420

Many records to one · 423
One record to many · 420

Running · 373
Sections in · 379
Settings section · 391

File related · 394
Global · 391

SORT section · 389
TEMPORARYFILE section · 400, 449
UPDATEFILE section · 400
Uses section · 378, 379

MANIPULATE
Key word in Manipula · 383

Menu file · 277, 336
Applying · 277, 345
Editing · 337, 338, 343

Menu items · 338
Speed buttons · 343
User-defined menu items · 339, 340, 341,

343
System default · 277, 337

Menu Manager · 336, 337. See also Menu file
Mode Library Editor · 278, 279, 281. See also

Mode library file
Extracting a mode library file · 324
Opening a data model · 282
Preparing a data model in · 283, 314
Printing mode library settings · 284
Saving a data model · 283
Viewing page and question properties · 315
Viewing pages in · 313, 314

Mode library file · 277, 278, 281
~dm file and · 279
Applying · 277, 323
Audit trail settings · 245, 288
Behaviour identifiers · 300, 334
Behaviour toggles · 282, 292, 293, 296, 297

Adding a toggle set · 299
Applying a toggle set · 300
Deleting a toggle set · 300

Colour settings · 284, 291
DEP configuration file and · 280
Extracting from a data model · 324
FieldPane settings · 300, 306, 307, 313
Font settings · 284

Default · 284
User-defined · 285

Grid settings · 300, 304, 305, 313
Grid for a table · 305

Help settings · 256, 288, 295
InfoPane settings · 300, 309, 313

Dialog boxes · 311, 312
Layout identifiers · 300, 302, 303, 334

Grid, InfoPane, FieldPane identifiers · 313
LAYOUT section and · 301
Layout sets · 300

Adding a layout set · 302
Applying a layout set · 303
Deleting a layout set · 303

Layout settings · 282, 300. See also FieldPane
settings; InfoPane settings; Grid settings

Multimedia settings · 251, 298
Options settings · 284, 287
Printing · 284
Style settings · 284, 285, 287, 291
System default · 277

Monitor utility · 38
Multi-level rostering

Example instrument · 190
Multimedia · 248, 252

Audio fills · 253
Audio-CASI · 248
Declaring multimedia language · 249
Graphics · 248
Implementation · 248
Key words in · 249, 250
Mode library file settings · 251, 298
Uses of · 248
Video · 248

N

NEWCOLUMN
Key word · 137, 264

NEWLINE
Key word · 137, 264

NEWPAGE
Key word · 137, 178, 264

NODK · 93
NODONTKNOW

Answer attribute key word · 93
NOEMPTY

Answer attribute key word · 93
Nonresponse

As parallel block · 191
Blocks in data model · 185, 188

NOREFUSAL
Answer attribute key word · 93

NORF · See NOREFUSAL
NOT

Key word · 124

 Index

Developer's Guide 613

O

OPEN
Field type key word · 75
File method key word · 220

Operators · 123, 125
OR

Key word · 124
ORD

Function in Blaise · 79, 185
OUTPUTFILE

Key word in Manipula · 382

P

Page-based presentation · 259. See Layout section
PARALLEL

Key word · 191
Parallel blocks · 153, 191

Accessing in the DEP · 192, 193, 288
Assigning parallel status · 191
CATI data models and · 497, 498
For arrayed blocks · 192
Parameters and · 193
Specifying text for · 193, 327
Types of · 191
Unrouted · 192

Parameters · 169, 375
Advantages of · 167
Blocks and · 162, 167
Definition of · 169
Example of · 167
Export · 170
Forward checking · 200
Import · 170, 199
In administrative blocks · 190
Internal · 172, 198
List in rules section · 169, 171
Mini-data models and · 182
Names · 169
Performance issues · 171, 172
Procedures and · 233
Selective checking and · 198
Transit · 170
Types of · 170
Use in hierarchical data model · 195
Uses for · 171
Viewing in data model · 200

PAUSE
Key word · 414

Performance issues
Improving performance · 200
Parameters and · 171, 172, 198
Selective checking mechanism · 198

Pre-coded fields · See Fields, Enumerated
Prepare command · 18

Command line prepare utility · 42, 585
PRIMARY

Key word · 140
Primary file · 26, 173
Primary key · 139

Basis of search in external files · 220
Defining in data model · 140
External file and · 213
Searching on in Database Browser · 52
Used in lookups · 225
With secondary keys in lookups · 225

PRINT
Key word · 379

PROCEDURE
Key word · 233

Procedures · 233
Example of · 234
Manipula · 411
To add edits to data model · 128
Uses of · 233

Programmer's comments · 69
Projects · 25

Creating · 25
Opening · 27
Options · 28
Primary files · 26
Project Manager · 25

Q

Question-by-question help · See Help
QUOTAREACHED

Key word · 525

R

RANDOM function · 235
READ

Key word · 213, 215, 220
READY

Key word · 414
REAL

Field type key word · 77
Real fields · See Fields

Index

614 Blaise 4.5

Reformatting files · 420
REFUSAL · 95

Answer attribute key word · 93
In IF condition · 94
Stored as status · 94

REPEAT-loop
In Manipula · 383

RESERVECHECK
Key word · 128, 130, 233

Reserved words · 61
RESULT

Key word · 220
RF · See REFUSAL
Rostering

Multi-level · 195
Tables used for · 154, 175

Route field methods · 107, 108
ASK · 107
KEEP · 107, 108, 109, 110, 112, 132, 181
SHOW · 107, 181

Route instructions · 60, 62, 107
Fields named in exclusive branches · 118
In conditional rules · 113

Rules · 107
Computations · See Computations
Conditional · See Conditional rules
Edit checks · See Edit checks
Empty rules section · 138
Execution of · 111
Included files in · 175
Layout elements · 60, 137, 138

DUMMY · 137
NEWCOLUMN · 137
NEWLINE · 137
NEWPAGE · 137

Looping through · 134
Manipulating arrays in · 183
Omission of in a block · 138
Precedence for operators in · 125
Route instructions · See Route instructions
Types of · 60, 62, 107

RULES · 107
Key word · 62

Run command · 21
Invoking · 21, 47
Setting parameters · 22

S

Screen design · See Data Entry Program, Screen
design

SEARCH
Conditional use of · 221
Key word · 213, 215, 220

SECONDARY
Key word · 140

Secondary keys · 140, 446
Defining in data model · 140
Searching on in Database Browser · 52
Trigram searching · 141
Used in lookups · 225
With primary key in lookups · 225

Selective checking · 172, 198
SELECTSTATUS

Key word · 408
SET

Key word · 80
SETLANGUAGE

Key word · 144
Setting editor colours for Syntax Highlighting ·

17
SETTINGS

Key word · 96, 379
Settings section · 139

Block level · 96
Key fields in

Primary key · 139
Secondary key · 140

Languages in · 142
Placement in data model · 139

Shortcut keys
Blaise text editor · 12
Defining in menu file · 336, 339
DEP default · 354

SHOW · 108
Applied to block level · 181

SIGNAL
Key word · 60, 120

Signals · 121
Soft error · See SIGNAL
SORT

Key word · 379, 389
SOUND

Multimedia key word · 248, 249
Speedbar · See Data Entry Program
STARTDATE

Date function · 86
STARTTIME

Time function · 87
STRING

Key word · 74
String expressions · 124
Structure Browser · 43

Detail panel · 45, 46

 Index

Developer's Guide 615

Icons in · 44
Opening · 43
Setting options · 47

Styles · See Layout section, Layout styles
Subblock · See Blocks, cild
Subroutine

DLL · 236
SUPPRESSCOUNT

Key word · 408
Symbols

' (single quote) · 74, 75
" (double quotes) · 71, 78, 100, 173, 208
() (parentheses) · 73, 78, 132, 389
(colon) · 87, 169
, (comma) · 78, 94, 140, 169, 208, 517
. (dot notation) · 91, 157, 165
/ (slash) · 72, 208
@ (at sign) · 99, 100
@/ (at sign and slash) · 98
@| (at sign and piping symbol) · 100
[] (square brackets) · 81, 83

In Cameleon · 466
[* (bracket and asterisk)

In Cameleon · 466
^ (caret) · 76, 100, 101
_ (underscore) · 209
{ } (braces) · 69, 150
| (piping symbol) · 230

SYSDATE
Date function · 86

SYSTIME
Time function · 87

T

Tab stops · 285, 286
In data model · 100

TABLE
Key word · 176

Tables · 175
As special block · 176
Columns in · 177
Definition of · 176
DUMMY in · 178
Extremely large · 177
Holes in · See Tables, DUMMY in
Layout section · 178, 200
Page breaks in · 178
Pagination in · 178
Protecting from change · 181
Rows in · 176, 177

Uses of · 154
TEMPORARYFILE

Key word · 379, 400
Testing

CATI Emulation · 559
Creating a test data set · 444
Role of mini-data models · 182
Use of blocks in · 167

Text enhancements · 97. See also Mode library
file, Font settings
Font settings in mode library file · 284, 285
Hard spaces · 98
Marking in data model · 99
New line command · 98
Proportional vs. non-proportional font · 99
Spaces in · 97
Specifying in field text · 99

Time formats in Blaise · 85
Time slices · 491. See also CATI data models;

CATI Specification Program
Time stamp · 87, 109
TIMETYPE

Key word · 87
TLanguage · 144
TO · See FOR loop
Topic identifier

Used in WinHelp · 255
TRANSIT

Key word · 170
Transit parameter · See Parameters
TRIGRAM

Key word · 141
Trigram search · 227, 228

Mode library file settings · 297
TYPE · 88

Key word · 69
Types · 88

Advantages of · 89
Blocks as · 157
Defining · 93
Examples of · 69
Type libraries · 90, 91

Advantages of · 90, 91
Duplicate type names · 91
Field types allowed in · 91

User defined · 88

U

UPDATEFILE
Key word · 379, 400

Index

616 Blaise 4.5

USERNAME
Environment variable function · 417

USES
Key word · 215, 379
Key word in Manipula · 378

Uses section
For external files · 215
For lookups · 229
In Manipula · 378

V

Video · See Multimedia
VIDEO

Multimedia key word · 249

W

WHILE-loop
In Manipula · 383

Windows settings · 85, 347
WinHelp · 143, 255, 258, 295

Topic identifiers · 255
WRITE

Key word · 383, 403
WRITEALL

Key word · 403

Y

Year 2000 compliance · 86

	1 Introduction
	1.1 Additional Capabilities
	1.2 Advanced Blaise products
	1.3 Blaise Documentation
	1.4 Blaise Examples
	1.5 Conventions Used in This Guide

	2 Blaise Control Centre
	2.1 Opening the Control Centre
	2.1.1 File types in the Control Centre
	2.1.2 Blaise text editor

	2.2 Control Centre Functions
	2.2.1 Prepare command
	2.2.2 Build Command
	2.2.3 Run command
	2.2.4 Setting run parameters
	2.2.5 Setting General Environment Parameters
	2.2.6 Projects
	2.2.7 Data model properties
	2.2.8 Data file management
	2.2.9 Configuring tools
	2.2.10 Manipula Wizard
	2.2.11 Monitor utility
	2.2.12 Hospital utility
	2.2.13 Command line prepare utility
	2.2.14 A remark on OleDB

	2.3 Structure Browser
	2.3.1 Viewing the structure
	2.3.2 Structure Browser options
	2.3.3 Viewing data model statements

	2.4 Database Browser
	2.4.1 Viewing the data
	2.4.2 Database Browser options

	2.5 Help
	2.5.1 What’s New
	2.5.2 Enter registration

	3 Data Model Basics
	3.1 Blaise Language Overview
	3.2 Fields
	3.2.1 Field types
	3.2.2 TYPE section
	3.2.3 Answer attributes
	3.2.4 Enhancing texts

	3.3 Auxiliary Fields (Auxfields)
	3.4 Local Variables (Locals)
	3.5 Summary of Fields, Auxfields, and Locals
	3.6 Rules
	3.6.1 Route instructions
	3.6.2 Route field methods
	3.6.3 Conditional rules
	3.6.4 Edit checks
	3.6.5 Computations
	3.6.6 Looping through rules
	3.6.7 Layout elements in the RULES section
	3.6.8 Rules or no rules
	3.6.9 Empty RULES section

	3.7 SETTINGS Section
	3.7.1 Key fields
	3.7.2 Languages
	3.7.3 TLANGUAGE, a provided language type

	3.8 Functions
	3.9 Data File Compatibility
	3.9.1 Causes of data file incompatibility
	3.9.2 Production or development

	3.10 Good Programming Practices
	3.11 Example Data Models

	4 Blocks and Tables
	4.1 Blocks
	4.1.1 Blocks as types, repeating code
	4.1.2 Block-level text
	4.1.3 Passing information to a block by direct reference
	4.1.4 Two or more separate blocks
	4.1.5 Nested blocks

	4.2 Parameters
	4.2.1 Parameter example
	4.2.2 Parameter details

	4.3 Included Files
	4.3.1 Format of the INCLUDE command
	4.3.2 FIELDS and RULES sections in included files
	4.3.3 File name extensions

	4.4 Tables
	4.4.1 Extremely large tables
	4.4.2 Different kinds of tables
	4.4.3 Protecting blocks and tables from further change

	4.5 Mini-data Models
	4.6 Block Computations
	4.7 Array Methods
	4.8 Helpful Administrative and Survey Management Blocks
	4.8.1 Nonresponse block
	4.8.2 Appointment block

	4.9 Parallel Blocks
	4.9.1 Blocks chosen by menu

	4.10 Hierarchical Data Models
	4.10.1 Connecting arrayed blocks

	4.11 Selective Checking Mechanism and Instrument Performance
	4.11.1 Performance and parameters
	4.11.2 Other performance gains

	4.12 Good Programming Practices
	4.13 Example Data Models

	5 Special Topics
	5.1 Hierarchical Coding
	5.1.1 Classification type
	5.1.2 Building the classification type
	5.1.3 Classify method for coding a field
	5.1.4 Using the code later in the data model

	5.2 Retrieving Information from External Files
	5.2.1 External file requirements
	5.2.2 The external data model and data file
	5.2.3 Referring to the external data model and data file
	5.2.4 Accessing the external data with file methods

	5.3 Lookups
	5.3.1 External lookup file
	5.3.2 Keys in the external lookup file
	5.3.3 Declaring the external file lookup from the main data model
	5.3.4 Accessing related data in the lookup record
	5.3.5 Giving the lookup a starting value
	5.3.6 Using hierarchical coding and lookup together

	5.4 Blaise Procedures
	5.5 Dynamic Link Libraries
	5.5.1 Two types of alien DLL reference
	5.5.2 Delphi™ DLLs and other DLLs
	5.5.3 Delphi™ DLL procedure called by a Blaise DEP alien procedure
	5.5.4 Delphi™ DLL procedure called by a Blaise DEP alien router

	5.6 Audit Trail
	5.6.1 Audit trail DLLs
	5.6.2 Invoking the audit trail DLL
	5.6.3 Contents of the audit trail file
	5.6.4 Miscellaneous audit trail information

	5.7 Multimedia Language
	5.7.1 Implementing the multimedia capability
	5.7.2 Declaring the multimedia language
	5.7.3 Multimedia key words in the multimedia language
	5.7.4 Multimedia settings in the mode library file
	5.7.5 Other multimedia considerations

	5.8 Question-by-Question Help
	5.8.1 Using WinHelp
	5.8.2 Create a WinHelp file
	5.8.3 Blaise help language

	5.9 LAYOUT Section
	5.9.1 Implementing LAYOUT sections
	5.9.2 Location key words
	5.9.3 Layout style key words
	5.9.4 Location and layout key words used together

	5.10 Example Data Models

	6 Data Entry Program
	6.1 Overview of Screen Design in Blaise
	6.2 DEP Window Components
	6.2.1 FormPane
	6.2.2 Grid
	6.2.3 FieldPane
	6.2.4 InfoPane
	6.2.5 Menu, Speedbar, and Status bar

	6.3 Modes of Behaviour
	6.3.1 Routing
	6.3.2 Checking
	6.3.3 Error reporting
	6.3.4 Combining the behaviour modes

	6.4 DEP Customisation Files
	6.5 Mode Library File
	6.5.1 Using the Mode Library Editor
	6.5.2 Mode library file: Style settings
	6.5.3 Mode library file: Toggles
	6.5.4 Mode library file: Layout—Grids, FieldPanes, InfoPanes
	6.5.5 Viewing pages in the Mode Library Editor
	6.5.6 Common screen layout tasks
	6.5.7 Applying a mode library file
	6.5.8 Detaching/Attaching a mode library file from a data model

	6.6 Data model properties
	6.6.1 Set properties for system and user-defined types of the data model
	6.6.2 Specify text for parallel blocks
	6.6.3 Languages properties
	6.6.4 Status bar properties

	6.7 DEP Configuration File
	6.7.1 Using the DEP Configuration Program
	6.7.2 Editing a DEP configuration file
	6.7.3 Applying a DEP configuration file

	6.8 Menu File and the DEP Menu Manager
	6.8.1 Using the DEP Menu Manager
	6.8.2 Editing and adding menu items
	6.8.3 Editing and adding speed buttons
	6.8.4 Applying a menu file

	6.9 Screen Layout Considerations
	6.9.1 Data density in the page
	6.9.2 Font sizes
	6.9.3 New pages created for new Grids
	6.9.4 Screen resolution
	6.9.5 Summary of screen layout factors

	6.10 Using the DEP
	6.10.1 Invoking a behaviour mode: interviewing or data editing
	6.10.2 Entering responses
	6.10.3 Navigating between forms
	6.10.4 Errors
	6.10.5 Languages
	6.10.6 Multimedia
	6.10.7 Watch window

	6.11 Running the DEP Outside the Control Centre

	7 Basic Manipula
	7.1 Things You Can Do With Manipula
	7.2 Starting Manipula
	7.2.1 Creating a Manipula setup
	7.2.2 Preparing a Manipula setup
	7.2.3 Running a Manipula setup
	7.2.4 Manipula Run parameters

	7.3 Inspecting Input and Output Data
	7.4 Basic Operation of Manipula
	7.5 File Formats Supported by Manipula
	7.6 Outline of a Basic Manipula Setup
	7.6.1 USES section
	7.6.2 INPUTFILE section
	7.6.3 OUTPUTFILE section
	7.6.4 MANIPULATE section
	7.6.5 Other file sections

	7.7 Basic Examples
	7.7.1 Extending a Blaise data file
	7.7.2 Initialising a Blaise data file
	7.7.3 Exporting a Blaise data file to ASCII

	7.8 Extending a Manipula Setup
	7.8.1 AUXFIELDS section
	7.8.2 SORT section
	7.8.3 PRINT section
	7.8.4 SETTINGS section

	7.9 Running Manipula as a Separate Program
	7.10 Example Manipula Setups

	8 Advanced Manipula
	8.1 More Sections in Manipula
	8.1.1 PROLOGUE section
	8.1.2 UPDATEFILE section
	8.1.3 TEMPORARYFILE section

	8.2 More About Files
	8.2.1 Linking files and the LINKFIELDS subsection
	8.2.2 Day file
	8.2.3 Message file
	8.2.4 Customised information files
	8.2.5 File methods WRITE, KEEP, WRITEALL, and KEEPALL

	8.3 Example File Structures
	8.3.1 Address and roster information in one file
	8.3.2 Address and roster information in separate files

	8.4 More About MANIPULATE
	8.4.1 Checking rules
	8.4.2 Form correctness status
	8.4.3 Block history
	8.4.4 Counting forms
	8.4.5 AUTOREAD = NO
	8.4.6 Procedures
	8.4.7 Block computations
	8.4.8 Functions
	8.4.9 Exits from loops
	8.4.10 Stopping Manipula
	8.4.11 Debugging Manipula setups

	8.5 Manipula and Its Environment
	8.5.1 Command line parameter strings
	8.5.2 Environment variables
	8.5.3 Local area network (LAN) issues

	8.6 Reformatting Files
	8.6.1 One physical record to many
	8.6.2 Many physical records to one

	8.7 Importing Blocks of Data Into Blaise
	8.7.1 Address and roster information in one file
	8.7.2 Address and roster information in separate files
	8.7.3 Two-stage ASCII read-in with UPDATEFILE
	8.7.4 Reading in two ASCII files at the same time

	8.8 Exporting Blocks of Data from Blaise
	8.8.1 ASCIIRelational file types
	8.8.2 EMBEDDED and ordinary blocks
	8.8.3 Exporting one or a few blocks of data

	8.9 Miscellaneous Uses of Manipula
	8.9.1 Making a test data set
	8.9.2 Creating a library file for classify

	8.10 Performance Issues
	8.10.1 Improving performance with Manipula features
	8.10.2 Skipping to a secondary key value
	8.10.3 Data sharing
	8.10.4 Filters
	8.10.5 TEMPORARYFILE
	8.10.6 Block computations
	8.10.7 CONNECT = NO
	8.10.8 AUTOCOPY = NO

	8.11 Example Manipula Setups

	9 Cameleon
	9.1 Cameleon and Metadata
	9.2 Example Data Model
	9.3 Cameleon Translators Supplied with Blaise
	9.4 How to Start Cameleon
	9.4.1 Running Cameleon
	9.4.2 Setting Cameleon run parameters

	9.5 Cameleon Output Samples
	9.5.1 Output from spss.cif
	9.5.2 Output from sas.cif

	9.6 Programming in Cameleon
	9.6.1 Basic Cameleon programming concepts
	9.6.2 Example program cameltst.cif
	9.6.3 Example program param.cif
	9.6.4 Example program wesvar.cif
	9.6.5 Analysing the wesvar.cif translator
	9.6.6 Using metadata loops

	10 CATI Call Management System
	10.1 Blaise CATI Concepts
	10.2 CATI Interviewing
	10.2.1 Make Dial screen
	10.2.2 Making appointments
	10.2.3 Using a CATI menu

	10.3 Developing CATI Data Models
	10.3.1 INHERIT CATI and TCatiMana
	10.3.2 Special CATI fields
	10.3.3 Appointment block
	10.3.4 Additional blocks
	10.3.5 Initialise the data file

	10.4 CATI Specification Program for Study Management
	10.4.1 Create a specification file
	10.4.2 Survey days
	10.4.3 Crew parameters
	10.4.4 General parameters
	10.4.5 Dial menu
	10.4.6 Field selection
	10.4.7 Interviewers and Groups
	10.4.8 Time zones
	10.4.9 Time slices
	10.4.10 Quota control
	10.4.11 Parallel blocks
	10.4.12 Daybatch select
	10.4.13 Daybatch sort

	10.5 CATI Management Program for the Supervisor
	10.5.1 Create daybatch
	10.5.2 Summary
	10.5.3 Forms
	10.5.4 View active interviewers and groups
	10.5.5 Set environment options
	10.5.6 View history and log files
	10.5.7 Configure the Tools menu
	10.5.8 Running the CATI Management Program outside the Control Centre

	10.6 Example: A Simple CATI Survey
	10.6.1 Step 1: CATI data model
	10.6.2 Step 2: Initialising the data file
	10.6.3 Step 3: Survey specification
	10.6.4 Step 4: Survey management
	10.6.5 Step 5: Interviewing

	10.7 CATI/CAPI Compatibility
	10.8 Other Considerations

	11 CATI Technical Details
	11.1 Rules for Inclusion in the Daybatch
	11.2 Call Scheduler
	11.2.1 Selecting forms
	11.2.2 Routing back forms
	11.2.3 Assigning priorities, starting times, and ending times
	11.2.4 Activating a form with medium or higher priority

	11.3 Treatments
	11.3.1 Treatment of dials
	11.3.2 Exceptions to general treatment rules

	11.4 Files Needed for CATI
	11.5 History File
	11.6 Glossary

	Appendix A: Command Line Parameters
	Command line prepare utility (B4CPars.exe)
	Cameleon (cameleon.exe)
	CATI Emulator (btemula.exe)
	CATI Management Program (btmana.exe)
	CATI Specification Program (btspec.exe)
	Control Centre (blaise.exe)
	Data Entry Program (dep.exe)
	Hospital (hospital.exe)
	Manipula/Maniplus (manipula.exe)
	Blaise Command Line Option Files

	Appendix B: Files in Blaise
	Instrument Files
	Blaise Data Files
	External Data Files
	DEP Customisation Files
	Data Entry Program Files for Stand-alone or Remote Operation
	Manipula/Maniplus Files for Stand-alone or Remote Operation
	Files for Distribution for an Application
	Source Code Files
	Folder Structures
	CATI Call Management System Files

	Index

